organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1529

Bis(1H-imidazol-3-ium) naphthalene-1,5-di­sulfonate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: seuwei@126.com

(Received 29 February 2012; accepted 18 April 2012; online 25 April 2012)

The asymmetric unit of the title organic salt, 2C3H5N2+·C10H6O6S22−, consists of an imidazolium cation and half a naphthalene-1,5-disulfonate dianion, completed to the full dianion through an inversion center. N—H⋯S and N—H⋯O hydrogen bonds link cations and anions in the crystal, forming a chain propagating along [101].

Related literature

For general background to structure phase transitions in ferroelectrics, see: Ye et al. (2009[Ye, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42-43.]); Zhang et al. (2009[Zhang, W., Cheng, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544-12545.]).

[Scheme 1]

Experimental

Crystal data
  • 2C3H5N2+·C10H6O6S22−

  • Mr = 424.45

  • Triclinic, [P \overline 1]

  • a = 6.6764 (13) Å

  • b = 6.7958 (14) Å

  • c = 10.251 (2) Å

  • α = 93.66 (3)°

  • β = 103.30 (3)°

  • γ = 96.77 (3)°

  • V = 447.48 (16) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 293 K

  • 0.55 × 0.44 × 0.36 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.837, Tmax = 0.885

  • 4578 measured reflections

  • 2043 independent reflections

  • 1901 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.095

  • S = 1.13

  • 2043 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯S1i 0.86 2.84 3.588 (2) 147
N2—H2A⋯O3i 0.86 1.90 2.745 (2) 168
N1—H1A⋯O2ii 0.86 2.09 2.847 (2) 147
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y+1, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dielectric-ferroelectric constitute an interesting class of materials, comprising organic ligands, metal-organic coordination compounds, organic-inorganic hybrids and organic salts (Ye et al., 2009; Zhang et al., 2009). Unfortunately, the dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent, below the melting point of the compound. We have found that title compound has no dielectric anomaly from 80 K to 405 K. Herein we describe the crystal structure of this compound.

The asymmetric unit of the title compound consists of an imidazolium cation in general position, and a half naphthalene-1,5-disulfonate anion, close to a inversion center (Fig. 1). The imidazolium ring and the naphthalene ring make a dihedral angle of 69.3°. The cations and anions are connected in the crystal by N—H···S and N—H···O hydrogen bonds, which improve the stability of the crystal structure. These hydrogen bonds link the cations and anions into a chain oriented in the [101] direction (Fig. 2 and Table 1).

Related literature top

For general background to structure phase transitions in ferroelectrics, see: Ye et al. (2009); Zhang et al. (2009).

Experimental top

The title compound was obtained by the addition of naphthalene-1,5-disulfonic acid (2.88 g, 0.01 mol) to a solution of imidazole (1.36 g, 0.02 mol) in water, in the stoichiometric ratio 1:2. Good quality single crystals were obtained by slow evaporation, after two days (yield: 38%).

Refinement top

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93 Å, N—H = 0.86 Å and with Uiso(H) = 1.2 Ueq(carrier atom).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the packing of the title compound, along the b axis. Dashed lines indicate hydrogen bonds.
Bis(1H-imidazol-3-ium) naphthalene-1,5-disulfonate top
Crystal data top
2C3H5N2+·C10H6O6S22V = 447.48 (16) Å3
Mr = 424.45Z = 1
Triclinic, P1F(000) = 220
Hall symbol: -P 1Dx = 1.575 Mg m3
a = 6.6764 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.7958 (14) ŵ = 0.34 mm1
c = 10.251 (2) ÅT = 293 K
α = 93.66 (3)°Block, colorless
β = 103.30 (3)°0.55 × 0.44 × 0.36 mm
γ = 96.77 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2043 independent reflections
Radiation source: fine-focus sealed tube1901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 88
Tmin = 0.837, Tmax = 0.885k = 88
4578 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.095 w = 1/[σ2(Fo2) + (0.0312P)2 + 0.2736P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max = 0.001
2043 reflectionsΔρmax = 0.34 e Å3
128 parametersΔρmin = 0.36 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.473 (17)
Primary atom site location: structure-invariant direct methods
Crystal data top
2C3H5N2+·C10H6O6S22γ = 96.77 (3)°
Mr = 424.45V = 447.48 (16) Å3
Triclinic, P1Z = 1
a = 6.6764 (13) ÅMo Kα radiation
b = 6.7958 (14) ŵ = 0.34 mm1
c = 10.251 (2) ÅT = 293 K
α = 93.66 (3)°0.55 × 0.44 × 0.36 mm
β = 103.30 (3)°
Data collection top
Rigaku SCXmini
diffractometer
2043 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1901 reflections with I > 2σ(I)
Tmin = 0.837, Tmax = 0.885Rint = 0.025
4578 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.13Δρmax = 0.34 e Å3
2043 reflectionsΔρmin = 0.36 e Å3
128 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1864 (3)0.8251 (3)0.5703 (2)0.0502 (5)
H1A0.31030.87500.56890.060*
C10.0353 (3)0.7669 (3)0.4648 (2)0.0414 (5)
H1C0.04300.77270.37570.050*
N20.1299 (2)0.6987 (2)0.50561 (17)0.0339 (4)
H2A0.24900.65120.45420.041*
C20.0821 (4)0.7151 (3)0.6423 (2)0.0429 (5)
H2C0.17090.67820.69700.051*
C30.1172 (4)0.7945 (4)0.6829 (3)0.0561 (7)
H3B0.19390.82330.77150.067*
S10.59698 (6)0.27214 (7)0.74446 (4)0.02816 (18)
O10.8155 (2)0.3366 (2)0.80260 (13)0.0360 (3)
O20.5600 (2)0.0983 (2)0.64608 (13)0.0381 (4)
O30.4864 (2)0.4326 (2)0.68915 (14)0.0399 (4)
C40.2276 (3)0.2277 (3)1.0055 (2)0.0349 (4)
H4A0.12160.29371.02410.042*
C50.3273 (3)0.2901 (3)0.90549 (19)0.0317 (4)
H5A0.28660.39680.85820.038*
C60.4841 (3)0.1945 (3)0.87756 (16)0.0253 (4)
C70.5517 (2)0.0313 (2)0.94962 (16)0.0239 (3)
C80.7149 (3)0.0712 (3)0.92461 (18)0.0304 (4)
H8A0.78350.03090.85950.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0278 (8)0.0370 (10)0.0858 (15)0.0023 (7)0.0143 (9)0.0151 (10)
C10.0479 (12)0.0383 (11)0.0473 (12)0.0133 (9)0.0237 (10)0.0131 (9)
N20.0272 (8)0.0314 (8)0.0409 (9)0.0021 (6)0.0048 (7)0.0024 (7)
C20.0543 (13)0.0361 (10)0.0402 (11)0.0044 (9)0.0206 (10)0.0036 (8)
C30.0621 (15)0.0423 (12)0.0477 (13)0.0113 (11)0.0098 (11)0.0023 (10)
S10.0252 (2)0.0347 (3)0.0221 (2)0.00415 (16)0.00433 (16)0.00418 (16)
O10.0263 (7)0.0450 (8)0.0331 (7)0.0064 (5)0.0048 (5)0.0061 (6)
O20.0400 (8)0.0454 (8)0.0260 (7)0.0091 (6)0.0119 (6)0.0049 (6)
O30.0363 (7)0.0451 (8)0.0360 (7)0.0012 (6)0.0029 (6)0.0155 (6)
C40.0326 (9)0.0414 (10)0.0351 (10)0.0129 (8)0.0130 (8)0.0027 (8)
C50.0319 (9)0.0323 (9)0.0311 (9)0.0069 (7)0.0063 (7)0.0044 (7)
C60.0246 (8)0.0295 (8)0.0202 (7)0.0008 (6)0.0047 (6)0.0000 (6)
C70.0210 (7)0.0287 (8)0.0200 (7)0.0000 (6)0.0038 (6)0.0019 (6)
C80.0276 (9)0.0395 (10)0.0266 (8)0.0054 (7)0.0111 (7)0.0033 (7)
Geometric parameters (Å, º) top
N1—C11.301 (3)O3—S11.4601 (15)
N1—C31.358 (4)S1—C61.7828 (18)
N1—H1A0.8600C4—H4A0.9300
C1—H1C0.9300C4—C8i1.363 (3)
N2—C11.312 (3)C5—H5A0.9300
N2—C21.358 (3)C5—C41.406 (3)
N2—H2A0.8600C6—C51.369 (3)
C2—C31.334 (3)C6—C71.431 (2)
C2—H2C0.9300C7—C81.422 (2)
C3—H3B0.9300C7—C7i1.428 (3)
O1—S11.4464 (14)C8—C4i1.363 (3)
O2—S11.4621 (15)C8—H8A0.9300
C1—N1—C3109.10 (18)O1—S1—C6107.15 (8)
C1—N1—H1A125.4O3—S1—C6106.12 (9)
C3—N1—H1A125.4O2—S1—C6105.93 (8)
N1—C1—N2108.4 (2)C8i—C4—C5120.55 (17)
N1—C1—H1C125.8C8i—C4—H4A119.7
N2—C1—H1C125.8C5—C4—H4A119.7
C1—N2—C2108.91 (18)C6—C5—C4120.21 (17)
C1—N2—H2A125.5C6—C5—H5A119.9
C2—N2—H2A125.5C4—C5—H5A119.9
C3—C2—N2106.7 (2)C5—C6—C7121.20 (16)
C3—C2—H2C126.7C5—C6—S1118.37 (14)
N2—C2—H2C126.7C7—C6—S1120.39 (13)
C2—C3—N1106.9 (2)C8—C7—C7i118.9 (2)
C2—C3—H3B126.5C8—C7—C6123.07 (16)
N1—C3—H3B126.5C7i—C7—C6118.00 (19)
O1—S1—O3112.88 (9)C4i—C8—C7121.10 (17)
O1—S1—O2112.73 (9)C4i—C8—H8A119.5
O3—S1—O2111.46 (9)C7—C8—H8A119.5
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1ii0.862.843.588 (2)147
N2—H2A···O3ii0.861.902.745 (2)168
N1—H1A···O2iii0.862.092.847 (2)147
N1—H1A···O2iv0.862.563.118 (3)124
Symmetry codes: (ii) x, y+1, z+1; (iii) x, y+1, z; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula2C3H5N2+·C10H6O6S22
Mr424.45
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.6764 (13), 6.7958 (14), 10.251 (2)
α, β, γ (°)93.66 (3), 103.30 (3), 96.77 (3)
V3)447.48 (16)
Z1
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.55 × 0.44 × 0.36
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.837, 0.885
No. of measured, independent and
observed [I > 2σ(I)] reflections
4578, 2043, 1901
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.095, 1.13
No. of reflections2043
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.36

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···S1i0.862.843.588 (2)146.5
N2—H2A···O3i0.861.902.745 (2)167.7
N1—H1A···O2ii0.862.092.847 (2)147.1
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for the purchase of the diffractometer.

References

First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, H.-Y., Fu, D.-W., Zhang, Y., Zhang, W., Xiong, R.-G. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 42–43.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Cheng, L.-Z., Xiong, R.-G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc. 131, 12544–12545.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1529
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds