metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[(1H-1,2,3-benzotriazol-1-yl)methyl 2,2-di­methyl­propano­ato-κN3]di­chlorido­copper(II)

aDepartment of Stomatology, Nanjing Jinling Hospital, Nanjing University School of Medicine, 305 East Zhongshan Road, 210002 Nanjing, Jiangsu Province, People's Republic of China, and bDepartment of Applied Chemistry, School of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu Province 210016, People's Republic of China
*Correspondence e-mail: guoting69@163.com

(Received 26 March 2012; accepted 10 April 2012; online 18 April 2012)

In the title compound, [CuCl2(C12H15N3O2)2], the CuII ion is located on an inversion center and is four-coordinated in a distorted square-planar geometry by two chloride anions and two N atoms from two (1H-1,2,3-benzotriazol-1-yl)methyl 2,2-dimethyl­propano­ate ligands. The Cl—Cu—N angles of 90.55 (9) and 89.45 (9)° are close to ideal values. In the crystal, weak ππ stacking inter­actions are observed between inversion-related benzene rings [centroid–centroid distance = 4.0028 (6) Å].

Related literature

For related structures, see: Wang (2008[Wang, W. (2008). Acta Cryst. E64, m998.]); Tang et al. (2011[Tang, X.-L., Dou, W., Zhou, J., Zhang, G.-L., Liu, W.-S., Yang, L.-Z. & Shao, Y.-L. (2011). CrystEngComm, 13, 2890-2898.]). For the structure of the free benzotriazole ligand, see: Xu & Shen (2012[Xu, S. & Shen, Y. (2012). Acta Cryst. E68, o1066.]).

[Scheme 1]

Experimental

Crystal data
  • [CuCl2(C12H15N3O2)2]

  • Mr = 600.98

  • Monoclinic, P 21 /c

  • a = 10.1929 (19) Å

  • b = 14.576 (2) Å

  • c = 9.2565 (15) Å

  • β = 96.499 (14)°

  • V = 1366.4 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.04 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.820, Tmax = 0.828

  • 9798 measured reflections

  • 2412 independent reflections

  • 2025 reflections with I > 2σ(I)

  • Rint = 0.048

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.101

  • S = 1.15

  • 2412 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

We recently synthesized a new benzotriazole derivative, L, namely (1H-1,2,3-benzotriazol-1-yl)methyl 2,2-dimethylpropanoate (Xu & Shen, 2012). For continuing our work, we now synthesized the title compound, [CuCl2(L)2]. The asymmetric unit contains one half of a complex, with the CuII ion located on an inversion center (Fig. 1). The metal is four-coordinated in the common square-planar geometry by two chloride anions and two N atoms from two L ligands. Bond lengths, Cu—N = 2.018 (3) and Cu—Cl = 2.2377 (11) Å, are comparable to distances found in other reports (Wang, 2008; Tang et al., 2011). In the crystal, there are C—H···O and C—H···Cl weak hydrogen bonds interactions, and weak ππ stacking interactions between inversion-related benzene rings [centroid to centroid distance = 4.0028 (6)°].

Related literature top

For related structures, see: Wang (2008); Tang et al. (2011). For the structure of the free benzotriazole ligand, see: Xu & Shen (2012).

Experimental top

(1H-benzo[d][1,2,3]triazol-1-yl)methyl pivalate (0.25 mmol, Xu & Shen, 2012) and copper chloride (0.25 mmol) were mixed in a round bottom flask, with 10 ml of absolute ethyl alcohol, and stirred for 10 h. After reaction completed, white solids were obtained, which were dissolved in ethanol. Blue crystals suitable for X-ray analysis were obtained by slow evaporation of ethanol, at room temperature.

Refinement top

H atoms were placed in idealized positions and refined using a riding-model approximation, with C—H= 0.93 Å and Uiso(H) = 1.2Ueq(C) for aryl CH, C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl CH3, C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene CH2 groups.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level (Symmetry code #1: 1-x, -y, -z).
Bis[(1H-1,2,3-benzotriazol-1-yl)methyl 2,2-dimethylpropanoato-κN3]dichloridocopper(II) top
Crystal data top
[CuCl2(C12H15N3O2)2]F(000) = 622
Mr = 600.98Dx = 1.461 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3200 reflections
a = 10.1929 (19) Åθ = 2.5–26.6°
b = 14.576 (2) ŵ = 1.04 mm1
c = 9.2565 (15) ÅT = 296 K
β = 96.499 (14)°Block, blue
V = 1366.4 (4) Å30.20 × 0.20 × 0.19 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2412 independent reflections
Radiation source: fine-focus sealed tube2025 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 2.0°
ϕ and ω scansh = 1112
Absorption correction: multi-scan
(SABADS; Sheldrick, 1996)
k = 1717
Tmin = 0.820, Tmax = 0.828l = 1011
9798 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0095P)2 + 1.8659P]
where P = (Fo2 + 2Fc2)/3
2412 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.39 e Å3
0 constraints
Crystal data top
[CuCl2(C12H15N3O2)2]V = 1366.4 (4) Å3
Mr = 600.98Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.1929 (19) ŵ = 1.04 mm1
b = 14.576 (2) ÅT = 296 K
c = 9.2565 (15) Å0.20 × 0.20 × 0.19 mm
β = 96.499 (14)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2412 independent reflections
Absorption correction: multi-scan
(SABADS; Sheldrick, 1996)
2025 reflections with I > 2σ(I)
Tmin = 0.820, Tmax = 0.828Rint = 0.048
9798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.15Δρmax = 0.26 e Å3
2412 reflectionsΔρmin = 0.39 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3811 (3)0.0246 (3)0.2886 (4)0.0350 (8)
C20.3663 (4)0.1197 (3)0.2948 (4)0.0413 (9)
H20.38590.15750.21920.050*
C30.3216 (4)0.1545 (3)0.4170 (4)0.0488 (10)
H30.31110.21760.42460.059*
C40.2909 (4)0.0983 (3)0.5317 (4)0.0503 (11)
H40.26100.12530.61290.060*
C50.3036 (4)0.0055 (3)0.5273 (4)0.0459 (10)
H50.28290.03200.60280.055*
C60.3496 (3)0.0301 (3)0.4023 (4)0.0350 (8)
C70.3690 (4)0.2011 (3)0.4420 (4)0.0436 (10)
H7A0.40240.19060.54300.052*
H7B0.42360.24770.40370.052*
C80.2046 (4)0.3077 (3)0.3507 (4)0.0442 (10)
C90.0678 (4)0.3415 (3)0.3700 (4)0.0441 (10)
C100.0319 (4)0.2630 (3)0.3583 (6)0.0661 (14)
H10A0.03930.23790.26190.099*
H10B0.11650.28570.37830.099*
H10C0.00290.21610.42740.099*
C110.0769 (4)0.3834 (3)0.5231 (5)0.0570 (12)
H11A0.10740.33780.59370.085*
H11B0.00880.40470.54170.085*
H11C0.13750.43400.52940.085*
C120.0271 (5)0.4150 (3)0.2566 (5)0.0610 (13)
H12A0.08800.46540.26900.092*
H12B0.06020.43630.26830.092*
H12C0.02790.38950.16110.092*
Cl10.31996 (11)0.08447 (8)0.06653 (11)0.0563 (3)
Cu10.50000.00000.00000.03856 (19)
N10.4260 (3)0.0325 (2)0.1866 (3)0.0398 (8)
N20.4237 (3)0.1178 (2)0.2304 (3)0.0414 (8)
N30.3767 (3)0.1173 (2)0.3608 (3)0.0375 (7)
O10.2367 (3)0.23282 (18)0.4335 (3)0.0461 (7)
O20.2812 (3)0.3406 (2)0.2781 (4)0.0846 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0313 (19)0.040 (2)0.0332 (19)0.0021 (16)0.0034 (15)0.0014 (16)
C20.042 (2)0.043 (2)0.038 (2)0.0008 (18)0.0036 (17)0.0064 (18)
C30.048 (2)0.047 (3)0.049 (2)0.005 (2)0.0013 (19)0.005 (2)
C40.052 (3)0.060 (3)0.040 (2)0.010 (2)0.0068 (19)0.007 (2)
C50.045 (2)0.057 (3)0.037 (2)0.000 (2)0.0082 (17)0.003 (2)
C60.032 (2)0.041 (2)0.033 (2)0.0044 (17)0.0076 (15)0.0002 (17)
C70.039 (2)0.043 (2)0.049 (2)0.0064 (18)0.0088 (18)0.0093 (19)
C80.053 (3)0.041 (2)0.040 (2)0.001 (2)0.0164 (19)0.0003 (19)
C90.044 (2)0.041 (2)0.049 (2)0.0072 (19)0.0108 (18)0.0018 (19)
C100.047 (3)0.061 (3)0.092 (4)0.000 (2)0.014 (3)0.004 (3)
C110.061 (3)0.057 (3)0.056 (3)0.020 (2)0.020 (2)0.000 (2)
C120.062 (3)0.064 (3)0.057 (3)0.018 (2)0.007 (2)0.009 (2)
Cl10.0553 (7)0.0696 (8)0.0458 (6)0.0151 (6)0.0141 (5)0.0123 (5)
Cu10.0461 (4)0.0381 (4)0.0336 (4)0.0010 (3)0.0136 (3)0.0033 (3)
N10.0450 (19)0.0386 (19)0.0374 (18)0.0017 (15)0.0107 (14)0.0057 (15)
N20.046 (2)0.041 (2)0.0382 (18)0.0028 (15)0.0132 (15)0.0009 (15)
N30.0396 (18)0.0411 (19)0.0328 (16)0.0078 (15)0.0087 (13)0.0043 (14)
O10.0432 (16)0.0388 (16)0.0592 (17)0.0125 (13)0.0189 (13)0.0043 (14)
O20.078 (2)0.085 (3)0.102 (3)0.034 (2)0.054 (2)0.048 (2)
Geometric parameters (Å, º) top
C1—N11.375 (5)C9—C121.524 (5)
C1—C61.386 (5)C9—C101.526 (6)
C1—C21.396 (5)C9—C111.536 (5)
C2—C31.364 (5)C10—H10A0.9600
C2—H20.9300C10—H10B0.9600
C3—C41.404 (6)C10—H10C0.9600
C3—H30.9300C11—H11A0.9600
C4—C51.360 (6)C11—H11B0.9600
C4—H40.9300C11—H11C0.9600
C5—C61.397 (5)C12—H12A0.9600
C5—H50.9300C12—H12B0.9600
C6—N31.365 (5)C12—H12C0.9600
C7—O11.418 (4)Cl1—Cu12.2377 (11)
C7—N31.442 (5)Cu1—N1i2.018 (3)
C7—H7A0.9700Cu1—N12.018 (3)
C7—H7B0.9700Cu1—Cl1i2.2377 (11)
C8—O21.188 (5)N1—N21.309 (4)
C8—O11.352 (5)N2—N31.347 (4)
C8—C91.508 (5)
N1—C1—C6107.3 (3)C9—C10—H10A109.5
N1—C1—C2132.4 (3)C9—C10—H10B109.5
C6—C1—C2120.3 (4)H10A—C10—H10B109.5
C3—C2—C1116.8 (4)C9—C10—H10C109.5
C3—C2—H2121.6H10A—C10—H10C109.5
C1—C2—H2121.6H10B—C10—H10C109.5
C2—C3—C4122.3 (4)C9—C11—H11A109.5
C2—C3—H3118.8C9—C11—H11B109.5
C4—C3—H3118.8H11A—C11—H11B109.5
C5—C4—C3121.8 (4)C9—C11—H11C109.5
C5—C4—H4119.1H11A—C11—H11C109.5
C3—C4—H4119.1H11B—C11—H11C109.5
C4—C5—C6115.9 (4)C9—C12—H12A109.5
C4—C5—H5122.1C9—C12—H12B109.5
C6—C5—H5122.1H12A—C12—H12B109.5
N3—C6—C1104.5 (3)C9—C12—H12C109.5
N3—C6—C5132.6 (4)H12A—C12—H12C109.5
C1—C6—C5122.9 (4)H12B—C12—H12C109.5
O1—C7—N3110.8 (3)N1i—Cu1—N1180.0
O1—C7—H7A109.5N1i—Cu1—Cl190.55 (9)
N3—C7—H7A109.5N1—Cu1—Cl189.45 (9)
O1—C7—H7B109.5N1i—Cu1—Cl1i89.45 (9)
N3—C7—H7B109.5N1—Cu1—Cl1i90.55 (9)
H7A—C7—H7B108.1Cl1—Cu1—Cl1i180.0
O2—C8—O1121.0 (4)N2—N1—C1110.1 (3)
O2—C8—C9127.6 (4)N2—N1—Cu1120.7 (2)
O1—C8—C9111.4 (3)C1—N1—Cu1129.1 (3)
C8—C9—C12109.3 (3)N1—N2—N3107.0 (3)
C8—C9—C10111.4 (3)N2—N3—C6111.2 (3)
C12—C9—C10110.5 (4)N2—N3—C7120.5 (3)
C8—C9—C11106.3 (3)C6—N3—C7128.1 (3)
C12—C9—C11109.8 (3)C8—O1—C7117.5 (3)
C10—C9—C11109.5 (4)
N1—C1—C2—C3178.1 (4)C6—C1—N1—Cu1175.6 (2)
C6—C1—C2—C30.8 (5)C2—C1—N1—Cu13.4 (6)
C1—C2—C3—C40.4 (6)Cl1—Cu1—N1—N2131.5 (3)
C2—C3—C4—C50.2 (6)Cl1i—Cu1—N1—N248.5 (3)
C3—C4—C5—C60.3 (6)Cl1—Cu1—N1—C153.3 (3)
N1—C1—C6—N30.4 (4)Cl1i—Cu1—N1—C1126.7 (3)
C2—C1—C6—N3179.5 (3)C1—N1—N2—N30.3 (4)
N1—C1—C6—C5178.4 (3)Cu1—N1—N2—N3176.4 (2)
C2—C1—C6—C50.7 (6)N1—N2—N3—C60.6 (4)
C4—C5—C6—N3178.6 (4)N1—N2—N3—C7176.6 (3)
C4—C5—C6—C10.1 (6)C1—C6—N3—N20.6 (4)
O2—C8—C9—C1212.0 (6)C5—C6—N3—N2178.0 (4)
O1—C8—C9—C12170.4 (3)C1—C6—N3—C7176.2 (3)
O2—C8—C9—C10134.4 (5)C5—C6—N3—C72.5 (7)
O1—C8—C9—C1048.0 (5)O1—C7—N3—N2104.3 (4)
O2—C8—C9—C11106.5 (5)O1—C7—N3—C680.5 (5)
O1—C8—C9—C1171.2 (4)O2—C8—O1—C76.4 (6)
C6—C1—N1—N20.0 (4)C9—C8—O1—C7171.4 (3)
C2—C1—N1—N2179.0 (4)N3—C7—O1—C8107.4 (4)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formula[CuCl2(C12H15N3O2)2]
Mr600.98
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.1929 (19), 14.576 (2), 9.2565 (15)
β (°) 96.499 (14)
V3)1366.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.20 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SABADS; Sheldrick, 1996)
Tmin, Tmax0.820, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
9798, 2412, 2025
Rint0.048
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.101, 1.15
No. of reflections2412
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.39

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Jinling Hospital Foundation of Nanjing Province of China (2009Q021), the Surface Project Foundation of Nanjing Military Region (11 MA099) and the Surface Project Foundation of Nanjing Military Region (10MA095).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTang, X.-L., Dou, W., Zhou, J., Zhang, G.-L., Liu, W.-S., Yang, L.-Z. & Shao, Y.-L. (2011). CrystEngComm, 13, 2890–2898.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, W. (2008). Acta Cryst. E64, m998.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXu, S. & Shen, Y. (2012). Acta Cryst. E68, o1066.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds