organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1495

N-(4-Bromo­phen­yl)-2-[(1-cyclo­hexyl­meth­yl-1H-1,2,4-triazol-3-yl)sulfanyl]­acetamide

aDepartment of Applied Chemistry, Faculty of Science, Kunming University of Science and Technology, Kunming, 650050, People's Republic of China, and bKey Laboratory of Medicinal Chemistry for Natural Resource, (Ministry of Education), School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of China
*Correspondence e-mail: yphe@ynu.edu.cn

(Received 5 April 2012; accepted 12 April 2012; online 21 April 2012)

The title compound, C17H21BrN4OS, was synthesized as a potential reverse transcriptase (RT) inhibitor of the human immunodeficiency virus type 1 (HIV-1). In the molecule, there is an N—H⋯S hydrogen bond making a five-membered ring. In the crystal, mol­ecules are connected into centrosymmetric dimers via pairs of N—H⋯N and weak C—H⋯N hydrogen bonds. The crystal structure also features C—H⋯O inter­actions.

Related literature

The 1,2,4-triazole scaffold and its analogues are important pharmacophores that can be found in biologically active compounds across a number of different therapeutic areas, see: Lin et al. (2005[Lin, R.-H., Connolly, P. J., Huang, S.-L., Wetter, S. K., Lu, Y.-H., Murray, W. V., Emanuel, S. L., Gruninger, R. H., Fuentes-Pesquera, A. R., Rugg, C. A., Middleton, S. A. & Jolliffe, L. K. (2005). J. Med. Chem. 48, 4208-4211.]); Naito et al. (1996[Naito, Y., Akahoshi, F., Takeda, S., Okada, T., Kajii, M., Nishimura, H., Sugiura, M., Fukaya, C. & Kagitani, Y. (1996). J. Med. Chem. 39, 3019-3029.]); Sui et al. (1998[Sui, Z.-H., Guan, J.-H., Hlasta, D. J., Macielag, M. J., Foleno, B. D., Goldschmidt, R. M., Loeloff, M. J., Webb, G. C. & Barrett, J. F. (1998). Bioorg. Med. Chem. Lett. 8, 1929-1934.]); Tafi et al. (2002[Tafi, A., Costi, R., Botta, M., Santo, R. D., Corelli, F., Massa, S., Ciacci, A., Manetti, F. & Artico, M. (2002). J. Med. Chem. 45, 2720-2732.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21BrN4OS

  • Mr = 409.35

  • Triclinic, [P \overline 1]

  • a = 7.2061 (8) Å

  • b = 9.521 (1) Å

  • c = 14.2862 (16) Å

  • α = 104.132 (1)°

  • β = 90.804 (1)°

  • γ = 95.820 (1)°

  • V = 944.84 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.30 mm−1

  • T = 298 K

  • 0.25 × 0.16 × 0.12 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]) Tmin = 0.597, Tmax = 0.770

  • 8793 measured reflections

  • 4076 independent reflections

  • 2644 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.092

  • S = 1.01

  • 4076 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯S1 0.86 2.61 3.096 (2) 117
N4—H4⋯N1i 0.86 2.55 3.339 (3) 153
C1—H1⋯O1ii 0.93 2.29 3.214 (3) 171
C13—H13⋯N1i 0.93 2.48 3.342 (3) 153
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y+1, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The 1,2,4-triazole scaffold and its analogues are important pharmacophores that can be found in biologically active compounds across a number of different therapeutic areas; these include antifungal (Tafi, et al., 2002), antibacterial (Sui, et al., 1998), antiasthmatic (Naito, et al., 1996) and anticancer activities (Lin, et al., 2005), etc. In the course of our search for new anti-HIV-1 agents, we have synthesized a new series of 1,2,4-triazole analogues, including the title compound, (I), as potential HIV-1 inhibitors.

The chemical structure of (I) is shown in Fig.1. The molecule is stabilized by a weak intramolecular N4—H4···S1 hydrogen bond (Table 1). The cyclohexyl ring adopts the lowest energy chair conformation. The torsion angle (C1—N3—C2—C3), which describes the arrangement between the cyclohexyl ring and the triazole moiety, is -112.1 (3) °; the torsion angle C12—N4—C11—O1, which characterizes the location of the CONH2 group relative to the phenyl ring, is 3.5 (4) °.

In the crystal structure, centrosymmetric dimmers are formed by pairs of N4—H4···N1i and C13—H13···N1i hydrogen bonds [symmetry code: (i) -x + 1, -y + 2,-z + 1]. These dimmers are further linked into chains by weak C—H···O interactions (Table 1, Fig.2).

Related literature top

The 1,2,4-triazole scaffold and its analogues are important pharmacophores that can be found in biologically active compounds across a number of different therapeutic areas, see: Lin et al. (2005); Naito et al. (1996); Sui et al. (1998); Tafi et al. (2002).

Experimental top

To a stirred solution of 2-((1H-1,2,4-triazol-3-yl)thio)-N-(4-bromophenyl)acetamide (3.12 g, 10 mmol) in anhydrous EtOH (75 ml) was added K2CO3 (1.38 g, 0.01 mol) under a nitrogen atmosphere. The mixture was stirred at 298 K for 15 min, then (bromomethyl)cyclohexane (0.53 g, 0.03 mol) was added, and the reaction mixture was refluxed for 8 h under a nitrogen atmosphere. The reaction mixture was poured into cold H2O (80 ml), then the aqueous phase was extracted with EtOAc (3×50 ml). The combined organic layer was washed with H2O (3×50 ml), dried (Mg2SO4), filtered and concentrated in vacuo to give the crude product, which was purified by chromatography (eluent EtOAc/PE 100:25) to afford the title compound (yield: 23%; m.p. 398.7–398.9 K). Single crystals of (I) suitable for X-ray diffraction were grown from a solution in EtOAc by slow evaporation. The product was characterized by IR, MS, 1H NMR and 13C NMR.

Refinement top

All H atoms were placed in calculated positions with N—H = 0.86 Å and C—H = 0.93–0.98 Å, and with Uiso(H) = 1.2Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labeling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Intermolecular N—H···Ni, C—H···Ni, C—H···Oii hydrogen bond are shown as dashed lines [symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x, 1 + y, z].
N-(4-Bromophenyl)-2-[(1-cyclohexylmethyl-1H-1,2,4-triazol- 3-yl)sulfanyl]acetamide top
Crystal data top
C17H21BrN4OSZ = 2
Mr = 409.35F(000) = 420
Triclinic, P1Dx = 1.439 Mg m3
Hall symbol: -P 1Melting point: 398.8(1) K
a = 7.2061 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.521 (1) ÅCell parameters from 2212 reflections
c = 14.2862 (16) Åθ = 2.3–24.5°
α = 104.132 (1)°µ = 2.30 mm1
β = 90.804 (1)°T = 298 K
γ = 95.820 (1)°Block, colourless
V = 944.84 (18) Å30.25 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4076 independent reflections
Radiation source: fine-focus sealed tube2644 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 27.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 98
Tmin = 0.597, Tmax = 0.770k = 1212
8793 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.1448P]
where P = (Fo2 + 2Fc2)/3
4076 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C17H21BrN4OSγ = 95.820 (1)°
Mr = 409.35V = 944.84 (18) Å3
Triclinic, P1Z = 2
a = 7.2061 (8) ÅMo Kα radiation
b = 9.521 (1) ŵ = 2.30 mm1
c = 14.2862 (16) ÅT = 298 K
α = 104.132 (1)°0.25 × 0.16 × 0.12 mm
β = 90.804 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4076 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2644 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 0.770Rint = 0.025
8793 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.01Δρmax = 0.34 e Å3
4076 reflectionsΔρmin = 0.42 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.07267 (5)0.57798 (4)0.86425 (2)0.07787 (16)
N10.2679 (3)1.0737 (2)0.49703 (17)0.0506 (6)
N20.1739 (3)0.9382 (2)0.60131 (15)0.0444 (5)
N30.1580 (3)1.0832 (2)0.64012 (16)0.0461 (5)
N40.4730 (3)0.6839 (2)0.59376 (15)0.0434 (5)
H40.50200.75720.56960.052*
O10.2434 (3)0.5032 (2)0.59473 (15)0.0683 (6)
S10.28308 (9)0.78377 (7)0.42896 (5)0.04868 (18)
C10.2140 (4)1.1586 (3)0.5772 (2)0.0532 (7)
H10.21511.25900.58810.064*
C20.0908 (4)1.1312 (3)0.7364 (2)0.0557 (7)
H2A0.02881.07660.74040.067*
H2B0.07141.23330.74830.067*
C30.2247 (4)1.1117 (3)0.81422 (19)0.0537 (7)
H30.24861.00920.79880.064*
C40.4098 (4)1.2034 (4)0.8179 (2)0.0726 (9)
H4A0.38831.30490.82770.087*
H4B0.46851.17430.75650.087*
C50.5408 (5)1.1879 (5)0.8986 (3)0.0958 (12)
H5A0.57501.08920.88470.115*
H5B0.65401.25370.90160.115*
C60.4501 (7)1.2220 (5)0.9949 (3)0.1066 (14)
H6A0.53291.20471.04400.128*
H6B0.42941.32411.01240.128*
C70.2675 (6)1.1298 (5)0.9914 (2)0.0935 (12)
H7A0.20961.15781.05310.112*
H7B0.29011.02850.98080.112*
C80.1356 (5)1.1455 (4)0.9123 (2)0.0755 (9)
H8A0.10121.24420.92680.091*
H8B0.02271.07970.90980.091*
C90.2392 (3)0.9403 (3)0.51580 (18)0.0405 (6)
C100.1917 (4)0.6457 (3)0.48677 (19)0.0465 (6)
H10A0.07610.67520.51540.056*
H10B0.15900.55730.43630.056*
C110.3064 (4)0.6054 (3)0.56361 (19)0.0435 (6)
C120.6046 (3)0.6588 (2)0.66041 (17)0.0397 (6)
C130.7805 (3)0.7356 (3)0.66796 (18)0.0449 (6)
H130.80520.80420.63200.054*
C140.9196 (4)0.7118 (3)0.72794 (19)0.0494 (6)
H141.03760.76310.73190.059*
C150.8817 (4)0.6118 (3)0.78159 (18)0.0487 (6)
C160.7086 (4)0.5367 (3)0.7767 (2)0.0575 (7)
H160.68450.47000.81410.069*
C170.5691 (4)0.5594 (3)0.71644 (19)0.0548 (7)
H170.45130.50820.71340.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0771 (3)0.0900 (3)0.0738 (2)0.01971 (19)0.02021 (18)0.03131 (19)
N10.0502 (13)0.0471 (13)0.0616 (15)0.0016 (11)0.0049 (11)0.0299 (12)
N20.0453 (12)0.0378 (12)0.0519 (13)0.0023 (10)0.0001 (10)0.0156 (10)
N30.0460 (13)0.0382 (12)0.0539 (14)0.0033 (10)0.0043 (10)0.0119 (10)
N40.0402 (12)0.0394 (11)0.0550 (13)0.0011 (10)0.0018 (10)0.0217 (10)
O10.0601 (13)0.0535 (12)0.0978 (16)0.0140 (10)0.0139 (11)0.0406 (12)
S10.0452 (4)0.0554 (4)0.0474 (4)0.0041 (3)0.0001 (3)0.0172 (3)
C10.0509 (16)0.0387 (15)0.074 (2)0.0001 (13)0.0130 (15)0.0247 (15)
C20.0510 (17)0.0502 (16)0.0640 (19)0.0086 (13)0.0011 (14)0.0091 (14)
C30.0556 (17)0.0485 (16)0.0580 (17)0.0070 (13)0.0034 (14)0.0145 (13)
C40.060 (2)0.087 (2)0.074 (2)0.0060 (18)0.0076 (16)0.0336 (18)
C50.070 (2)0.128 (3)0.098 (3)0.007 (2)0.025 (2)0.051 (3)
C60.123 (4)0.119 (3)0.076 (3)0.001 (3)0.031 (3)0.026 (2)
C70.126 (4)0.105 (3)0.056 (2)0.026 (3)0.008 (2)0.027 (2)
C80.083 (2)0.078 (2)0.066 (2)0.0134 (19)0.0163 (19)0.0176 (18)
C90.0322 (13)0.0427 (14)0.0492 (15)0.0013 (11)0.0073 (11)0.0191 (12)
C100.0425 (15)0.0378 (14)0.0566 (16)0.0001 (11)0.0033 (12)0.0087 (12)
C110.0409 (15)0.0342 (13)0.0544 (16)0.0046 (11)0.0007 (12)0.0086 (12)
C120.0415 (14)0.0355 (13)0.0446 (14)0.0055 (11)0.0020 (11)0.0141 (11)
C130.0465 (15)0.0410 (14)0.0498 (15)0.0022 (12)0.0011 (12)0.0192 (12)
C140.0428 (15)0.0464 (15)0.0581 (17)0.0043 (12)0.0051 (13)0.0153 (13)
C150.0555 (17)0.0498 (16)0.0436 (15)0.0113 (14)0.0053 (12)0.0149 (12)
C160.0617 (19)0.0613 (18)0.0582 (18)0.0004 (15)0.0003 (15)0.0343 (15)
C170.0482 (16)0.0591 (17)0.0623 (18)0.0054 (14)0.0002 (14)0.0298 (15)
Geometric parameters (Å, º) top
Br1—C151.903 (2)C5—H5A0.9700
N1—C11.319 (3)C5—H5B0.9700
N1—C91.357 (3)C6—C71.499 (5)
N2—C91.319 (3)C6—H6A0.9700
N2—N31.373 (3)C6—H6B0.9700
N3—C11.324 (3)C7—C81.512 (5)
N3—C21.447 (3)C7—H7A0.9700
N4—C111.353 (3)C7—H7B0.9700
N4—C121.412 (3)C8—H8A0.9700
N4—H40.8600C8—H8B0.9700
O1—C111.215 (3)C10—C111.510 (3)
S1—C91.750 (3)C10—H10A0.9700
S1—C101.793 (3)C10—H10B0.9700
C1—H10.9300C12—C131.387 (3)
C2—C31.519 (4)C12—C171.388 (3)
C2—H2A0.9700C13—C141.381 (3)
C2—H2B0.9700C13—H130.9300
C3—C41.512 (4)C14—C151.371 (4)
C3—C81.525 (4)C14—H140.9300
C3—H30.9800C15—C161.365 (4)
C4—C51.525 (4)C16—C171.382 (4)
C4—H4A0.9700C16—H160.9300
C4—H4B0.9700C17—H170.9300
C5—C61.508 (5)
C1—N1—C9101.8 (2)C6—C7—C8112.0 (3)
C9—N2—N3101.66 (19)C6—C7—H7A109.2
C1—N3—N2109.2 (2)C8—C7—H7A109.2
C1—N3—C2130.5 (2)C6—C7—H7B109.2
N2—N3—C2120.3 (2)C8—C7—H7B109.2
C11—N4—C12127.3 (2)H7A—C7—H7B107.9
C11—N4—H4116.4C7—C8—C3111.3 (3)
C12—N4—H4116.4C7—C8—H8A109.4
C9—S1—C10100.22 (12)C3—C8—H8A109.4
N1—C1—N3111.7 (2)C7—C8—H8B109.4
N1—C1—H1124.1C3—C8—H8B109.4
N3—C1—H1124.1H8A—C8—H8B108.0
N3—C2—C3112.8 (2)N2—C9—N1115.6 (2)
N3—C2—H2A109.0N2—C9—S1123.67 (18)
C3—C2—H2A109.0N1—C9—S1120.7 (2)
N3—C2—H2B109.0C11—C10—S1120.69 (18)
C3—C2—H2B109.0C11—C10—H10A107.2
H2A—C2—H2B107.8S1—C10—H10A107.2
C4—C3—C2112.2 (2)C11—C10—H10B107.2
C4—C3—C8110.8 (3)S1—C10—H10B107.2
C2—C3—C8110.2 (2)H10A—C10—H10B106.8
C4—C3—H3107.8O1—C11—N4123.6 (2)
C2—C3—H3107.8O1—C11—C10117.7 (2)
C8—C3—H3107.8N4—C11—C10118.6 (2)
C3—C4—C5111.9 (3)C13—C12—C17118.6 (2)
C3—C4—H4A109.2C13—C12—N4117.6 (2)
C5—C4—H4A109.2C17—C12—N4123.8 (2)
C3—C4—H4B109.2C14—C13—C12121.1 (2)
C5—C4—H4B109.2C14—C13—H13119.5
H4A—C4—H4B107.9C12—C13—H13119.5
C6—C5—C4111.2 (3)C15—C14—C13119.2 (2)
C6—C5—H5A109.4C15—C14—H14120.4
C4—C5—H5A109.4C13—C14—H14120.4
C6—C5—H5B109.4C16—C15—C14120.8 (2)
C4—C5—H5B109.4C16—C15—Br1119.7 (2)
H5A—C5—H5B108.0C14—C15—Br1119.5 (2)
C7—C6—C5111.2 (3)C15—C16—C17120.3 (2)
C7—C6—H6A109.4C15—C16—H16119.9
C5—C6—H6A109.4C17—C16—H16119.9
C7—C6—H6B109.4C16—C17—C12120.0 (3)
C5—C6—H6B109.4C16—C17—H17120.0
H6A—C6—H6B108.0C12—C17—H17120.0
C9—N2—N3—C10.3 (3)C1—N1—C9—S1178.04 (18)
C9—N2—N3—C2179.5 (2)C10—S1—C9—N26.0 (2)
C9—N1—C1—N30.4 (3)C10—S1—C9—N1172.49 (19)
N2—N3—C1—N10.1 (3)C9—S1—C10—C1181.3 (2)
C2—N3—C1—N1179.1 (2)C12—N4—C11—O13.5 (4)
C1—N3—C2—C3112.1 (3)C12—N4—C11—C10176.2 (2)
N2—N3—C2—C367.0 (3)S1—C10—C11—O1174.2 (2)
N3—C2—C3—C463.3 (3)S1—C10—C11—N45.5 (3)
N3—C2—C3—C8172.7 (2)C11—N4—C12—C13168.5 (2)
C2—C3—C4—C5177.8 (3)C11—N4—C12—C179.8 (4)
C8—C3—C4—C554.1 (4)C17—C12—C13—C141.6 (4)
C3—C4—C5—C654.9 (4)N4—C12—C13—C14176.8 (2)
C4—C5—C6—C755.1 (5)C12—C13—C14—C150.8 (4)
C5—C6—C7—C855.9 (5)C13—C14—C15—C160.4 (4)
C6—C7—C8—C355.4 (4)C13—C14—C15—Br1179.86 (19)
C4—C3—C8—C754.1 (4)C14—C15—C16—C170.7 (4)
C2—C3—C8—C7178.8 (3)Br1—C15—C16—C17179.5 (2)
N3—N2—C9—N10.5 (3)C15—C16—C17—C120.1 (4)
N3—N2—C9—S1178.05 (16)C13—C12—C17—C161.3 (4)
C1—N1—C9—N20.6 (3)N4—C12—C17—C16177.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···S10.862.613.096 (2)117
N4—H4···N1i0.862.553.339 (3)153
C1—H1···O1ii0.932.293.214 (3)171
C13—H13···N1i0.932.483.342 (3)153
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H21BrN4OS
Mr409.35
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.2061 (8), 9.521 (1), 14.2862 (16)
α, β, γ (°)104.132 (1), 90.804 (1), 95.820 (1)
V3)944.84 (18)
Z2
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.25 × 0.16 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.597, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
8793, 4076, 2644
Rint0.025
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.01
No. of reflections4076
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.42

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···S10.862.613.096 (2)116.7
N4—H4···N1i0.862.553.339 (3)153.1
C1—H1···O1ii0.932.293.214 (3)171.4
C13—H13···N1i0.932.483.342 (3)153.4
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the Fund for Fostering Talents of Kunming University of Science and Technology (grant No. 14118149) and the Natural Science Foundation of Yunnan Province (grant No. 619120090059 to YPW) and the Western Light Talent Culture Project of the Chinese Academy of Sciences (grant No. W8090303 to YPH).

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLin, R.-H., Connolly, P. J., Huang, S.-L., Wetter, S. K., Lu, Y.-H., Murray, W. V., Emanuel, S. L., Gruninger, R. H., Fuentes-Pesquera, A. R., Rugg, C. A., Middleton, S. A. & Jolliffe, L. K. (2005). J. Med. Chem. 48, 4208–4211.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNaito, Y., Akahoshi, F., Takeda, S., Okada, T., Kajii, M., Nishimura, H., Sugiura, M., Fukaya, C. & Kagitani, Y. (1996). J. Med. Chem. 39, 3019–3029.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSui, Z.-H., Guan, J.-H., Hlasta, D. J., Macielag, M. J., Foleno, B. D., Goldschmidt, R. M., Loeloff, M. J., Webb, G. C. & Barrett, J. F. (1998). Bioorg. Med. Chem. Lett. 8, 1929–1934.  Web of Science CrossRef CAS PubMed Google Scholar
First citationTafi, A., Costi, R., Botta, M., Santo, R. D., Corelli, F., Massa, S., Ciacci, A., Manetti, F. & Artico, M. (2002). J. Med. Chem. 45, 2720–2732.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1495
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds