organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1510-o1511

(1Z,2E)-N′-{1-[2-(4-Bromo­phen­yl)hydrazin-1-yl­­idene]-1-chloro­propan-2-yl­­idene}thio­phene-2-carbohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
*Correspondence e-mail: hkfun@usm.my

(Received 11 April 2012; accepted 18 April 2012; online 25 April 2012)

In the title compound, C14H12BrClN4OS, the thienyl ring is disordered over two orientations with a site-occupancy ratio of 0.853 (2):0.147 (2). The mol­ecule is roughly planar, with the dihedral angles between the thienyl and benzene rings being 6.24 (16) and 9.7 (11)° for the major and minor components, respectively. The central fragment is almost planar [r.m.s. deviation = 0.0275 (2) Å for the ten non-H atoms]. The mean plane through this middle unit makes a dihedral angle of 2.71 (7)° with the benzene ring, whereas these values are 4.46 (15) and 7.7 (11)° for the major and minor components of the thienyl ring, respectively. In the crystal, mol­ecules are linked into dimers by pairs of N—H⋯O hydrogen bonds, forming R22(8) ring motifs. These dimers are arranged into sheets parallel to the ac plane.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For background to and the biological activity of (1Z,2E)-N-(ar­yl)propane­hydrazonoyl chlorides, see: Abdel-Aziz & Mekawey (2009[Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985-3997.]); Abdel-Aziz et al. (2010[Abdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152-159.]). For a related structure, see: Abdel-Aziz et al. (2012[Abdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o926.]). For the stability of the temperature controller, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12BrClN4OS

  • Mr = 399.79

  • Monoclinic, P 21 /c

  • a = 13.5502 (14) Å

  • b = 3.8932 (4) Å

  • c = 29.816 (3) Å

  • β = 103.075 (2)°

  • V = 1532.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.00 mm−1

  • T = 100 K

  • 0.38 × 0.10 × 0.06 mm

Data collection
  • Bruker APEX Duo CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.399, Tmax = 0.848

  • 14314 measured reflections

  • 4458 independent reflections

  • 3378 reflections with I > 2σ(I)'

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.075

  • S = 1.05

  • 4458 reflections

  • 223 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.54 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H1N4⋯O1i 0.92 (3) 2.03 (3) 2.938 (2) 168 (2)
N1—H1N1⋯Cl1 0.92 (2) 2.51 (2) 2.9246 (19) 107.7 (15)
Symmetry code: (i) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis of a new class of (1Z,2E)-N-(aryl)propanehydrazonoyl chlorides as analogs of the title compound have recently been reported. These derivatives were used as an economical and versatile synthetic approach for stereoselective synthesis of novel amidrazone derivatives possessing significant antifungal and antiviral potencies (AbdelAziz & Mekawey, 2009; Abdel-Aziz et al., 2010). As part of our ongoing research on the bioactivity of bis-hydrazones, the title compound (I) was synthesized for a comparable study of another analog (Abdel-Aziz et al., 2012). Herein we report the synthesis and crystal structure of the title compound.

In the molecule of (I) (Fig. 1), C14H9BrClN4OS, the thienyl ring is disordered over two positions with the refined site-occupancy ratio of 0.853 (2): 0.147 (2). The molecule is essentially planar with the dihedral angles between the thienyl and benzene rings being 6.24 (16) and 9.7 (11)° for the major and minor components, rsepectively. The middle fragment is planar with an r.m.s. 0.0275 (2) Å for the ten non-H atoms (C7–C10/N1–N4/O1/Cl1). The mean plane through this middle bridge makes the dihedral angle of 2.71 (7) ° with the benzene ring whereas these values are 4.46 (15) and 7.7 (11)° for the major and minor components of the thienyl ring, respectively. An intramolecular N—H···Cl hydrogen bond (Table 1) generates an S(5) ring motif (Bernstein et al., 1995). The bond distances agree with the literature values (Allen et al., 1987) and comparable to the related structure (Abdel-Aziz et al., 2012).

In the crystal packing (Fig. 2), the molecules are linked into dimers by pairs of N—H···O hydrogen bonds forming the R22(8) ring motifs (Bernstein et al., 1995) and these dimers arranged into sheets parallel to the ac plane.

Related literature top

For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For background to and the biological activity of (1Z,2E)-N-(aryl)propanehydrazonoyl chlorides, see: Abdel-Aziz & Mekawey (2009); Abdel-Aziz et al. (2010). For a related structure, see: Abdel-Aziz et al. (2012). For the stability of the temperature controller, see: Cosier & Glazer (1986).

Experimental top

A mixture of thiophene-2-carbohydrazide (1.42 g, 10 mmol) and (Z)-N'-(4-bromophenyl)-2-oxopropanehydrazonoyl chloride (2.76 g, 10 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction was then left to cool at room temperature. The solid formed was filtered off, washed with ethanol and recrystallized twice from EtOH to afford yellow needle-shaped title compound.

Refinement top

Amide H atom was located in Fourier difference maps and refined isotrpically. The remainning H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C-H) = 0.93 Å for aromatic and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The thiophene ring is disordered over two sites in a 0.853 (2): 0.147 (2) occupancy ratio. Similarity restraint were used for the disordered thienyl ring. The thermal ellipsoids of each of the two pairs of atoms [C12X and C14X as well as S1X and C13X] were restrained to be the same.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids and the atom-numbering scheme. Open bonds show the minor component.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis. Hydrogen bonds were shown as dash lines.
(1Z,2E)-N'-{1-[2-(4-Bromophenyl)hydrazin-1-ylidene]- 1-chloropropan-2-ylidene}thiophene-2-carbohydrazide top
Crystal data top
C14H12BrClN4OSF(000) = 800
Mr = 399.79Dx = 1.733 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4458 reflections
a = 13.5502 (14) Åθ = 1.4–30.0°
b = 3.8932 (4) ŵ = 3.00 mm1
c = 29.816 (3) ÅT = 100 K
β = 103.075 (2)°Needle, yellow
V = 1532.1 (3) Å30.38 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker APEX Duo CCD area detector
diffractometer
4458 independent reflections
Radiation source: sealed tube3378 reflections with I > 2σ(I)'
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 30.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1919
Tmin = 0.399, Tmax = 0.848k = 25
14314 measured reflectionsl = 4141
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0313P)2 + 0.3052P]
where P = (Fo2 + 2Fc2)/3
4458 reflections(Δ/σ)max = 0.001
223 parametersΔρmax = 0.54 e Å3
6 restraintsΔρmin = 0.36 e Å3
Crystal data top
C14H12BrClN4OSV = 1532.1 (3) Å3
Mr = 399.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.5502 (14) ŵ = 3.00 mm1
b = 3.8932 (4) ÅT = 100 K
c = 29.816 (3) Å0.38 × 0.10 × 0.06 mm
β = 103.075 (2)°
Data collection top
Bruker APEX Duo CCD area detector
diffractometer
4458 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3378 reflections with I > 2σ(I)'
Tmin = 0.399, Tmax = 0.848Rint = 0.037
14314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0316 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.54 e Å3
4458 reflectionsΔρmin = 0.36 e Å3
223 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.46435 (3)0.69142 (13)0.184855 (16)0.01888 (11)
Br11.077635 (15)0.50439 (6)0.376036 (7)0.02669 (7)
O10.38556 (10)0.1793 (4)0.02052 (4)0.0194 (3)
N10.66736 (13)0.5947 (5)0.24295 (6)0.0197 (4)
N20.65558 (12)0.4813 (4)0.19957 (5)0.0174 (3)
N30.47407 (12)0.3945 (4)0.09546 (5)0.0158 (3)
N40.46842 (12)0.2636 (5)0.05229 (5)0.0162 (3)
C10.84509 (14)0.4225 (5)0.25890 (7)0.0176 (4)
H1A0.83690.33500.22930.021*
C20.93831 (15)0.4030 (5)0.28961 (7)0.0180 (4)
H2A0.99290.30030.28080.022*
C30.95018 (14)0.5373 (5)0.33370 (7)0.0171 (4)
C40.86974 (14)0.6913 (5)0.34736 (7)0.0182 (4)
H4A0.87860.78390.37680.022*
C50.77589 (14)0.7069 (5)0.31702 (7)0.0174 (4)
H5A0.72120.80570.32630.021*
C60.76335 (14)0.5748 (5)0.27276 (7)0.0158 (4)
C70.57143 (14)0.5059 (5)0.17035 (6)0.0165 (4)
C80.56220 (14)0.3761 (5)0.12343 (6)0.0160 (4)
C90.65679 (14)0.2370 (6)0.11173 (7)0.0204 (4)
H9A0.66660.34450.08410.031*
H9B0.65020.00670.10710.031*
H9C0.71390.28440.13650.031*
C100.38400 (13)0.2968 (5)0.01792 (6)0.0151 (4)
C110.29185 (14)0.4686 (5)0.02516 (6)0.0149 (4)
S10.26973 (5)0.6374 (2)0.07517 (3)0.01674 (17)0.854 (2)
C120.2069 (3)0.5033 (13)0.01037 (15)0.0204 (8)0.854 (2)
H12A0.20470.42930.04020.024*0.854 (2)
C130.1241 (3)0.6605 (15)0.00274 (13)0.0175 (7)0.854 (2)
H13B0.06160.70080.01710.021*0.854 (2)
C140.1476 (2)0.7459 (12)0.04819 (11)0.0174 (7)0.854 (2)
H14B0.10240.85170.06310.021*0.854 (2)
S1X0.2004 (5)0.498 (2)0.02227 (19)0.0144 (13)*0.146 (2)
C12X0.2653 (17)0.592 (8)0.0633 (8)0.039 (8)*0.146 (2)
H12B0.30820.59160.09240.047*0.146 (2)
C13X0.1671 (17)0.721 (8)0.0541 (8)0.0144 (13)*0.15
H13A0.13520.80970.07600.017*0.146 (2)
C14X0.125 (2)0.698 (13)0.0090 (9)0.039 (8)*0.15
H14A0.06070.78180.00420.047*0.146 (2)
H1N40.5211 (19)0.138 (7)0.0459 (8)0.035 (7)*
H1N10.6170 (15)0.722 (6)0.2508 (7)0.013 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0152 (2)0.0249 (3)0.0170 (2)0.00090 (19)0.00470 (17)0.0032 (2)
Br10.01893 (10)0.03023 (13)0.02601 (12)0.00166 (9)0.00517 (8)0.00167 (10)
O10.0184 (6)0.0270 (8)0.0133 (7)0.0001 (6)0.0047 (5)0.0034 (6)
N10.0163 (8)0.0294 (10)0.0135 (8)0.0020 (7)0.0039 (6)0.0054 (7)
N20.0177 (8)0.0221 (9)0.0122 (7)0.0014 (7)0.0033 (6)0.0019 (7)
N30.0172 (8)0.0185 (8)0.0119 (7)0.0016 (6)0.0039 (6)0.0006 (7)
N40.0139 (7)0.0230 (9)0.0116 (7)0.0012 (7)0.0028 (6)0.0022 (7)
C10.0182 (9)0.0219 (10)0.0137 (9)0.0002 (7)0.0060 (7)0.0019 (8)
C20.0159 (9)0.0188 (10)0.0200 (10)0.0006 (7)0.0056 (8)0.0007 (8)
C30.0145 (8)0.0174 (10)0.0176 (9)0.0019 (7)0.0003 (7)0.0021 (8)
C40.0220 (9)0.0182 (10)0.0138 (9)0.0004 (8)0.0030 (7)0.0003 (8)
C50.0185 (9)0.0195 (10)0.0147 (9)0.0016 (8)0.0051 (7)0.0003 (8)
C60.0150 (8)0.0181 (10)0.0142 (9)0.0011 (7)0.0029 (7)0.0011 (8)
C70.0150 (8)0.0212 (10)0.0146 (9)0.0018 (8)0.0057 (7)0.0002 (8)
C80.0162 (9)0.0182 (9)0.0137 (9)0.0009 (7)0.0039 (7)0.0002 (8)
C90.0153 (8)0.0298 (12)0.0156 (9)0.0026 (8)0.0026 (7)0.0037 (9)
C100.0146 (8)0.0174 (9)0.0140 (9)0.0031 (7)0.0043 (7)0.0019 (8)
C110.0150 (8)0.0169 (9)0.0138 (9)0.0025 (7)0.0051 (7)0.0005 (8)
S10.0170 (3)0.0194 (3)0.0146 (4)0.0011 (2)0.0052 (2)0.0011 (3)
C120.0187 (14)0.0260 (16)0.0185 (19)0.0034 (11)0.0082 (15)0.0041 (19)
C130.0126 (12)0.0226 (19)0.0167 (14)0.0015 (10)0.0020 (9)0.0031 (14)
C140.0143 (16)0.0217 (15)0.0170 (15)0.0056 (13)0.0048 (12)0.0032 (12)
Geometric parameters (Å, º) top
Cl1—C71.7601 (19)C8—C91.503 (3)
Br1—C31.8990 (19)C9—H9A0.9600
O1—C101.239 (2)C9—H9B0.9600
N1—N21.342 (2)C9—H9C0.9600
N1—C61.402 (2)C10—C111.475 (3)
N1—H1N10.92 (2)C11—C12X1.36 (2)
N2—C71.272 (2)C11—C121.383 (5)
N3—C81.295 (2)C11—S1X1.660 (6)
N3—N41.370 (2)C11—S11.717 (2)
N4—C101.358 (2)S1—C141.721 (2)
N4—H1N40.92 (3)C12—C131.409 (5)
C1—C21.384 (3)C12—H12A0.9300
C1—C61.399 (3)C13—C141.361 (4)
C1—H1A0.9300C13—H13B0.9300
C2—C31.390 (3)C14—H14B0.9300
C2—H2A0.9300S1X—C14X1.717 (19)
C3—C41.384 (3)C12X—C13X1.389 (18)
C4—C51.385 (3)C12X—H12B0.9300
C4—H4A0.9300C13X—C14X1.339 (17)
C5—C61.391 (3)C13X—H13A0.9300
C5—H5A0.9300C14X—H14A0.9300
C7—C81.466 (3)
N2—N1—C6118.94 (16)C8—C9—H9C109.5
N2—N1—H1N1119.5 (13)H9A—C9—H9C109.5
C6—N1—H1N1120.4 (13)H9B—C9—H9C109.5
C7—N2—N1121.87 (17)O1—C10—N4118.37 (17)
C8—N3—N4115.57 (16)O1—C10—C11119.68 (17)
C10—N4—N3122.12 (16)N4—C10—C11121.95 (17)
C10—N4—H1N4117.1 (16)C12X—C11—C12105.9 (9)
N3—N4—H1N4120.7 (16)C12X—C11—C10132.7 (9)
C2—C1—C6119.53 (18)C12—C11—C10121.2 (2)
C2—C1—H1A120.2C12X—C11—S1X113.6 (9)
C6—C1—H1A120.2C10—C11—S1X113.6 (3)
C1—C2—C3119.87 (18)C12—C11—S1110.5 (2)
C1—C2—H2A120.1C10—C11—S1128.37 (14)
C3—C2—H2A120.1S1X—C11—S1118.0 (3)
C4—C3—C2120.75 (18)C11—S1—C1491.51 (15)
C4—C3—Br1119.47 (15)C11—C12—C13114.0 (3)
C2—C3—Br1119.78 (14)C11—C12—H12A123.0
C3—C4—C5119.64 (18)C13—C12—H12A123.0
C3—C4—H4A120.2C14—C13—C12111.2 (3)
C5—C4—H4A120.2C14—C13—H13B124.4
C4—C5—C6120.05 (17)C12—C13—H13B124.4
C4—C5—H5A120.0C13—C14—S1112.9 (3)
C6—C5—H5A120.0C13—C14—H14B123.6
C5—C6—C1120.15 (18)S1—C14—H14B123.6
C5—C6—N1118.55 (17)C11—S1X—C14X89.5 (9)
C1—C6—N1121.30 (17)C11—C12X—C13X112.7 (16)
N2—C7—C8119.82 (17)C11—C12X—H12B123.6
N2—C7—Cl1121.57 (15)C13X—C12X—H12B123.6
C8—C7—Cl1118.61 (14)C14X—C13X—C12X110 (2)
N3—C8—C7117.55 (17)C14X—C13X—H13A124.9
N3—C8—C9125.54 (17)C12X—C13X—H13A124.9
C7—C8—C9116.89 (16)C13X—C14X—S1X113.8 (19)
C8—C9—H9A109.5C13X—C14X—H14A123.1
C8—C9—H9B109.5S1X—C14X—H14A123.1
H9A—C9—H9B109.5
C6—N1—N2—C7176.96 (19)N4—C10—C11—C12179.3 (3)
C8—N3—N4—C10173.07 (18)O1—C10—C11—S1X2.8 (4)
C6—C1—C2—C30.6 (3)N4—C10—C11—S1X176.9 (3)
C1—C2—C3—C40.1 (3)O1—C10—C11—S1177.55 (15)
C1—C2—C3—Br1179.12 (15)N4—C10—C11—S12.7 (3)
C2—C3—C4—C51.1 (3)C12X—C11—S1—C1432 (13)
Br1—C3—C4—C5178.13 (15)C12—C11—S1—C140.7 (3)
C3—C4—C5—C61.4 (3)C10—C11—S1—C14177.4 (2)
C4—C5—C6—C10.7 (3)S1X—C11—S1—C143.0 (4)
C4—C5—C6—N1179.99 (19)C12X—C11—C12—C132.2 (14)
C2—C1—C6—C50.3 (3)C10—C11—C12—C13177.5 (4)
C2—C1—C6—N1178.97 (19)S1X—C11—C12—C13166 (4)
N2—N1—C6—C5177.19 (18)S1—C11—C12—C130.8 (5)
N2—N1—C6—C13.5 (3)C11—C12—C13—C140.4 (7)
N1—N2—C7—C8179.62 (18)C12—C13—C14—S10.1 (6)
N1—N2—C7—Cl10.1 (3)C11—S1—C14—C130.5 (4)
N4—N3—C8—C7178.66 (17)C12X—C11—S1X—C14X2 (2)
N4—N3—C8—C92.3 (3)C12—C11—S1X—C14X15 (4)
N2—C7—C8—N3177.33 (19)C10—C11—S1X—C14X179.2 (19)
Cl1—C7—C8—N32.4 (3)S1—C11—S1X—C14X1.1 (19)
N2—C7—C8—C93.5 (3)C12—C11—C12X—C13X2 (3)
Cl1—C7—C8—C9176.79 (15)C10—C11—C12X—C13X176.9 (17)
N3—N4—C10—O1178.17 (17)S1X—C11—C12X—C13X1 (3)
N3—N4—C10—C111.6 (3)S1—C11—C12X—C13X146 (15)
O1—C10—C11—C12X173.4 (18)C11—C12X—C13X—C14X2 (4)
N4—C10—C11—C12X6.8 (18)C12X—C13X—C14X—S1X4 (5)
O1—C10—C11—C120.4 (4)C11—S1X—C14X—C13X3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···O1i0.92 (3)2.03 (3)2.938 (2)168 (2)
N1—H1N1···Cl10.92 (2)2.51 (2)2.9246 (19)107.7 (15)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H12BrClN4OS
Mr399.79
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.5502 (14), 3.8932 (4), 29.816 (3)
β (°) 103.075 (2)
V3)1532.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.00
Crystal size (mm)0.38 × 0.10 × 0.06
Data collection
DiffractometerBruker APEX Duo CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.399, 0.848
No. of measured, independent and
observed [I > 2σ(I)'] reflections
14314, 4458, 3378
Rint0.037
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.075, 1.05
No. of reflections4458
No. of parameters223
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.54, 0.36

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H1N4···O1i0.92 (3)2.03 (3)2.938 (2)168 (2)
N1—H1N1···Cl10.92 (2)2.51 (2)2.9246 (19)107.7 (15)
Symmetry code: (i) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

HAAA thanks the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University. HKF and SC thank the Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAbdel-Aziz, H. A., Abdel-Wahab, B. F. & Badria, F. A. (2010). Arch. Pharm. 343, 152–159.  Google Scholar
First citationAbdel-Aziz, H. A., Ghabbour, H. A., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, o926.  CSD CrossRef IUCr Journals Google Scholar
First citationAbdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985–3997.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1510-o1511
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds