organic compounds
2-Amino-3-carboxypyridinium chloride hemihydrate
aLaboratoire de Chimie Appliquée et Technologie des Matériaux (LCATM), Université Oum El Bouaghi, Algeria, bDépartement Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Oum El Bouaghi, Algeria, cUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Mentouri–Constantine, 25000 Algeria, and dLaboratoire de Chimie de Coodination, UPR–CNRS 8241, 205 route de Narbonne, 31077 Toulouse Cedex 04, France
*Correspondence e-mail: bouacida_sofiane@yahoo.fr
The 6H7N2O2+·Cl−·0.5H2O, consists of two protonated 2-amino-3-carboxypyridine cations, two chloride anions and one molecule of water. The crystal packing can be described as alternating layers of cations and anions parallel to (110), which are linked together by Ow—H⋯Cl interactions. In the crystal, four types of classical hydrogen bonds are observed, viz. cation–anion (O—H⋯Cl and N—H⋯Cl), cation–cation (N—H⋯O), cation–water (N—H⋯Ow) and water–anion (Ow—H⋯Cl), resulting in the formation of an infinite three-dimensional network.
of the title compound, CRelated literature
For applications of hybrid organic–inorganic compounds, see: Bouacida (2008); Kickelbick (2007); Mitzi et al. (1998); Asaji et al. (2007); Lynch & Jones (2004). For related structures, see: Beatty (2003); Sengupta et al. (2001); Berrah et al. (2011a,b,c); Akriche & Rzaigui (2007).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO (Agilent, 2011); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812017230/bq2352sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812017230/bq2352Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812017230/bq2352Isup3.cml
The title compound was synthesized by reacting 3-amino-pyridine-2-carboxylic acid (3 mmol) with InCl3 (1 mmol)in an aqueous solution of hydrochloric acid. The solutions were slowly evaporated to dryness for a couple of weeks. Some colorless crystals were carefully isolated under polarizing microscope for analysis by X-ray diffraction.
The H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C, N or O) with C—H = 0.93 Å, O—H = 0.82 Å and N—H = 0.86 Å with Uiso(H) = 1.2 Ueq(C or N) and Uiso(H) = 1.5 Ueq(O). H1W and H2W were located in a difference Fourier map and refined isotropically with Uiso(H) = 1.5Ueq(O).
Data collection: CrysAlis PRO (Agilent, 2011); cell
CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The asymmetric unit of (I) with the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. | |
Fig. 2. (Brandenburg & Berndt, 2001) Partial packing viewed via c axis showing layers parallel to (110) plane, which are connected with O—H···Cl Hydrogen bonds, shown as dashed lines. | |
Fig. 3. (Brandenburg & Berndt, 2001) Partial packing viewed via b axis showing Hydrogen bonds interactions, as dashed lines, cation-anion [O—H···Cl & N—H···Cl], cation-cation [N—H···O], cation-water [N—H···O1W] and water-anion [O1W—H···Cl]. |
C6H7N2O2+·Cl−·0.5H2O | Z = 4 |
Mr = 183.60 | F(000) = 380 |
Triclinic, P1 | Dx = 1.576 Mg m−3 |
a = 7.8949 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.1639 (5) Å | Cell parameters from 8921 reflections |
c = 11.0285 (6) Å | θ = 3.0–28.3° |
α = 81.392 (4)° | µ = 0.45 mm−1 |
β = 81.276 (3)° | T = 180 K |
γ = 81.682 (4)° | Box, colourless |
V = 773.68 (7) Å3 | 0.1 × 0.08 × 0.06 mm |
Agilent Xcalibur Sapphire1 long-nozzle diffractometer | 3600 independent reflections |
Radiation source: fine-focus sealed tube | 2857 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 8.2632 pixels mm-1 | θmax = 28.4°, θmin = 3.0° |
ω scans | h = −10→9 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | k = −12→12 |
Tmin = 0.831, Tmax = 1 | l = −13→14 |
14449 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.030 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.08 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0442P)2 + 0.1332P] where P = (Fo2 + 2Fc2)/3 |
3600 reflections | (Δ/σ)max = 0.006 |
214 parameters | Δρmax = 0.26 e Å−3 |
3 restraints | Δρmin = −0.28 e Å−3 |
C6H7N2O2+·Cl−·0.5H2O | γ = 81.682 (4)° |
Mr = 183.60 | V = 773.68 (7) Å3 |
Triclinic, P1 | Z = 4 |
a = 7.8949 (4) Å | Mo Kα radiation |
b = 9.1639 (5) Å | µ = 0.45 mm−1 |
c = 11.0285 (6) Å | T = 180 K |
α = 81.392 (4)° | 0.1 × 0.08 × 0.06 mm |
β = 81.276 (3)° |
Agilent Xcalibur Sapphire1 long-nozzle diffractometer | 3600 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | 2857 reflections with I > 2σ(I) |
Tmin = 0.831, Tmax = 1 | Rint = 0.033 |
14449 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | 3 restraints |
wR(F2) = 0.08 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.01 | Δρmax = 0.26 e Å−3 |
3600 reflections | Δρmin = −0.28 e Å−3 |
214 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N3A | −0.02482 (16) | 0.24894 (14) | 0.18532 (11) | 0.0277 (3) | |
H3A1 | −0.0772 | 0.2962 | 0.2448 | 0.033* | |
H3A2 | −0.0497 | 0.2761 | 0.1114 | 0.033* | |
N3B | 0.13489 (17) | 0.59931 (14) | 0.23112 (12) | 0.0291 (3) | |
H3B1 | 0.0857 | 0.6432 | 0.2933 | 0.035* | |
H3B2 | 0.1053 | 0.6298 | 0.1588 | 0.035* | |
O1W | 0.33167 (15) | 0.38876 (12) | 0.72134 (10) | 0.0306 (2) | |
H1W | 0.287 (2) | 0.3146 (14) | 0.7070 (17) | 0.046* | |
H2W | 0.280 (2) | 0.4650 (14) | 0.6834 (16) | 0.046* | |
Cl1 | 0.19706 (5) | 0.11808 (4) | 0.64870 (3) | 0.03012 (11) | |
Cl2 | 0.14081 (5) | 0.65043 (4) | 0.55111 (3) | 0.03071 (11) | |
O1A | 0.05136 (14) | 0.18895 (12) | −0.04721 (9) | 0.0301 (2) | |
O2A | 0.26652 (14) | 0.01182 (12) | −0.09112 (9) | 0.0287 (2) | |
H2A | 0.2445 | 0.0392 | −0.1619 | 0.043* | |
O1B | 0.20803 (14) | 0.54951 (12) | −0.00916 (10) | 0.0333 (3) | |
N4A | 0.12830 (15) | 0.09603 (13) | 0.32534 (10) | 0.0220 (2) | |
H4A | 0.074 | 0.1486 | 0.3809 | 0.026* | |
N4B | 0.29795 (16) | 0.44117 (14) | 0.36162 (11) | 0.0259 (3) | |
H4B | 0.2425 | 0.488 | 0.4204 | 0.031* | |
C2B | 0.34601 (17) | 0.40270 (14) | 0.15203 (12) | 0.0193 (3) | |
C2A | 0.19059 (17) | 0.05053 (15) | 0.11658 (12) | 0.0196 (3) | |
C3A | 0.09315 (17) | 0.13510 (15) | 0.20751 (12) | 0.0201 (3) | |
C5A | 0.24283 (19) | −0.01981 (16) | 0.36061 (13) | 0.0256 (3) | |
H5A | 0.2593 | −0.0421 | 0.4434 | 0.031* | |
C7A | 0.30817 (19) | −0.06680 (16) | 0.15319 (13) | 0.0238 (3) | |
H7A | 0.372 | −0.1227 | 0.0942 | 0.029* | |
C1A | 0.16107 (18) | 0.09171 (15) | −0.01399 (12) | 0.0210 (3) | |
O2B | 0.38993 (13) | 0.34859 (11) | −0.05118 (9) | 0.0272 (2) | |
H2B | 0.3638 | 0.3747 | −0.1211 | 0.041* | |
C1B | 0.30608 (17) | 0.44226 (15) | 0.02359 (12) | 0.0209 (3) | |
C7B | 0.47068 (18) | 0.28766 (16) | 0.18251 (13) | 0.0227 (3) | |
H7B | 0.5304 | 0.2339 | 0.1208 | 0.027* | |
C3B | 0.25557 (18) | 0.48538 (15) | 0.24663 (13) | 0.0218 (3) | |
C5B | 0.4206 (2) | 0.32921 (17) | 0.39066 (14) | 0.0279 (3) | |
H5B | 0.4441 | 0.3064 | 0.4719 | 0.033* | |
C6B | 0.51055 (19) | 0.24892 (17) | 0.30269 (13) | 0.0264 (3) | |
H6B | 0.5956 | 0.171 | 0.322 | 0.032* | |
C6A | 0.3345 (2) | −0.10448 (17) | 0.27672 (14) | 0.0281 (3) | |
H6A | 0.413 | −0.1856 | 0.3008 | 0.034* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N3A | 0.0289 (7) | 0.0298 (7) | 0.0217 (6) | 0.0094 (6) | −0.0026 (5) | −0.0084 (5) |
N3B | 0.0302 (7) | 0.0268 (6) | 0.0280 (7) | 0.0051 (6) | −0.0008 (5) | −0.0080 (5) |
O1W | 0.0410 (7) | 0.0254 (6) | 0.0259 (5) | 0.0005 (5) | −0.0104 (5) | −0.0036 (4) |
Cl1 | 0.0377 (2) | 0.0322 (2) | 0.02155 (18) | −0.00542 (16) | −0.00607 (15) | −0.00379 (14) |
Cl2 | 0.0382 (2) | 0.0302 (2) | 0.02172 (18) | 0.00677 (16) | −0.00392 (15) | −0.00771 (14) |
O1A | 0.0310 (6) | 0.0335 (6) | 0.0227 (5) | 0.0100 (5) | −0.0058 (4) | −0.0049 (4) |
O2A | 0.0349 (6) | 0.0301 (6) | 0.0179 (5) | 0.0084 (5) | −0.0028 (4) | −0.0059 (4) |
O1B | 0.0351 (6) | 0.0326 (6) | 0.0278 (6) | 0.0113 (5) | −0.0065 (5) | −0.0024 (4) |
N4A | 0.0249 (6) | 0.0228 (6) | 0.0185 (5) | −0.0021 (5) | −0.0001 (5) | −0.0062 (4) |
N4B | 0.0261 (6) | 0.0306 (7) | 0.0208 (6) | −0.0008 (5) | 0.0008 (5) | −0.0093 (5) |
C2B | 0.0190 (6) | 0.0178 (6) | 0.0209 (6) | −0.0034 (5) | −0.0004 (5) | −0.0032 (5) |
C2A | 0.0190 (7) | 0.0188 (6) | 0.0209 (7) | −0.0021 (5) | −0.0015 (5) | −0.0042 (5) |
C3A | 0.0193 (7) | 0.0216 (7) | 0.0197 (6) | −0.0041 (5) | −0.0017 (5) | −0.0033 (5) |
C5A | 0.0304 (8) | 0.0265 (7) | 0.0202 (7) | −0.0028 (6) | −0.0061 (6) | −0.0014 (6) |
C7A | 0.0250 (7) | 0.0223 (7) | 0.0232 (7) | 0.0005 (6) | −0.0013 (6) | −0.0055 (5) |
C1A | 0.0211 (7) | 0.0212 (7) | 0.0204 (7) | −0.0028 (6) | −0.0003 (5) | −0.0045 (5) |
O2B | 0.0330 (6) | 0.0277 (5) | 0.0197 (5) | 0.0050 (5) | −0.0058 (4) | −0.0058 (4) |
C1B | 0.0191 (7) | 0.0204 (7) | 0.0225 (7) | −0.0017 (6) | −0.0007 (5) | −0.0039 (5) |
C7B | 0.0224 (7) | 0.0227 (7) | 0.0232 (7) | −0.0025 (6) | −0.0009 (6) | −0.0058 (5) |
C3B | 0.0201 (7) | 0.0217 (7) | 0.0239 (7) | −0.0049 (6) | −0.0005 (5) | −0.0043 (5) |
C5B | 0.0284 (8) | 0.0344 (8) | 0.0210 (7) | −0.0043 (7) | −0.0050 (6) | −0.0024 (6) |
C6B | 0.0247 (7) | 0.0269 (7) | 0.0264 (7) | 0.0007 (6) | −0.0059 (6) | −0.0013 (6) |
C6A | 0.0300 (8) | 0.0249 (7) | 0.0273 (7) | 0.0049 (6) | −0.0070 (6) | −0.0018 (6) |
N3A—C3A | 1.3143 (18) | C2B—C7B | 1.3738 (19) |
N3A—H3A1 | 0.86 | C2B—C3B | 1.4236 (19) |
N3A—H3A2 | 0.86 | C2B—C1B | 1.4785 (18) |
N3B—C3B | 1.3172 (18) | C2A—C7A | 1.3695 (19) |
N3B—H3B1 | 0.86 | C2A—C3A | 1.4227 (19) |
N3B—H3B2 | 0.86 | C2A—C1A | 1.4778 (18) |
O1W—H1W | 0.854 (9) | C5A—C6A | 1.353 (2) |
O1W—H2W | 0.843 (9) | C5A—H5A | 0.93 |
O1A—C1A | 1.2058 (17) | C7A—C6A | 1.394 (2) |
O2A—C1A | 1.3221 (16) | C7A—H7A | 0.93 |
O2A—H2A | 0.82 | O2B—C1B | 1.3179 (16) |
O1B—C1B | 1.2058 (17) | O2B—H2B | 0.82 |
N4A—C5A | 1.3420 (18) | C7B—C6B | 1.3911 (19) |
N4A—C3A | 1.3548 (17) | C7B—H7B | 0.93 |
N4A—H4A | 0.86 | C5B—C6B | 1.357 (2) |
N4B—C5B | 1.342 (2) | C5B—H5B | 0.93 |
N4B—C3B | 1.3491 (18) | C6B—H6B | 0.93 |
N4B—H4B | 0.86 | C6A—H6A | 0.93 |
C3A—N3A—H3A1 | 120 | C2A—C7A—C6A | 121.60 (13) |
C3A—N3A—H3A2 | 120 | C2A—C7A—H7A | 119.2 |
H3A1—N3A—H3A2 | 120 | C6A—C7A—H7A | 119.2 |
C3B—N3B—H3B1 | 120 | O1A—C1A—O2A | 123.10 (12) |
C3B—N3B—H3B2 | 120 | O1A—C1A—C2A | 123.28 (12) |
H3B1—N3B—H3B2 | 120 | O2A—C1A—C2A | 113.62 (12) |
H1W—O1W—H2W | 106.3 (15) | C1B—O2B—H2B | 109.5 |
C1A—O2A—H2A | 109.5 | O1B—C1B—O2B | 123.72 (13) |
C5A—N4A—C3A | 123.91 (12) | O1B—C1B—C2B | 123.43 (12) |
C5A—N4A—H4A | 118 | O2B—C1B—C2B | 112.84 (12) |
C3A—N4A—H4A | 118 | C2B—C7B—C6B | 122.19 (13) |
C5B—N4B—C3B | 124.58 (13) | C2B—C7B—H7B | 118.9 |
C5B—N4B—H4B | 117.7 | C6B—C7B—H7B | 118.9 |
C3B—N4B—H4B | 117.7 | N3B—C3B—N4B | 118.05 (13) |
C7B—C2B—C3B | 118.77 (12) | N3B—C3B—C2B | 125.61 (13) |
C7B—C2B—C1B | 121.29 (12) | N4B—C3B—C2B | 116.33 (13) |
C3B—C2B—C1B | 119.94 (12) | N4B—C5B—C6B | 120.70 (13) |
C7A—C2A—C3A | 118.82 (12) | N4B—C5B—H5B | 119.7 |
C7A—C2A—C1A | 122.21 (12) | C6B—C5B—H5B | 119.7 |
C3A—C2A—C1A | 118.96 (12) | C5B—C6B—C7B | 117.41 (14) |
N3A—C3A—N4A | 118.07 (12) | C5B—C6B—H6B | 121.3 |
N3A—C3A—C2A | 125.06 (12) | C7B—C6B—H6B | 121.3 |
N4A—C3A—C2A | 116.85 (12) | C5A—C6A—C7A | 118.20 (14) |
N4A—C5A—C6A | 120.56 (13) | C5A—C6A—H6A | 120.9 |
N4A—C5A—H5A | 119.7 | C7A—C6A—H6A | 120.9 |
C6A—C5A—H5A | 119.7 | ||
C5A—N4A—C3A—N3A | 178.44 (13) | C7B—C2B—C1B—O2B | 5.75 (18) |
C5A—N4A—C3A—C2A | −2.8 (2) | C3B—C2B—C1B—O2B | −174.82 (12) |
C7A—C2A—C3A—N3A | −179.18 (14) | C3B—C2B—C7B—C6B | 0.4 (2) |
C1A—C2A—C3A—N3A | 0.5 (2) | C1B—C2B—C7B—C6B | 179.82 (13) |
C7A—C2A—C3A—N4A | 2.20 (19) | C5B—N4B—C3B—N3B | −178.55 (13) |
C1A—C2A—C3A—N4A | −178.08 (12) | C5B—N4B—C3B—C2B | 1.8 (2) |
C3A—N4A—C5A—C6A | 1.4 (2) | C7B—C2B—C3B—N3B | 179.06 (13) |
C3A—C2A—C7A—C6A | −0.2 (2) | C1B—C2B—C3B—N3B | −0.4 (2) |
C1A—C2A—C7A—C6A | −179.93 (14) | C7B—C2B—C3B—N4B | −1.36 (19) |
C7A—C2A—C1A—O1A | 175.54 (13) | C1B—C2B—C3B—N4B | 179.19 (12) |
C3A—C2A—C1A—O1A | −4.2 (2) | C3B—N4B—C5B—C6B | −1.3 (2) |
C7A—C2A—C1A—O2A | −4.50 (19) | N4B—C5B—C6B—C7B | 0.1 (2) |
C3A—C2A—C1A—O2A | 175.79 (12) | C2B—C7B—C6B—C5B | 0.3 (2) |
C7B—C2B—C1B—O1B | −173.77 (14) | N4A—C5A—C6A—C7A | 0.8 (2) |
C3B—C2B—C1B—O1B | 5.7 (2) | C2A—C7A—C6A—C5A | −1.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···Cl1 | 0.85 (1) | 2.24 (1) | 3.0887 (12) | 173 (2) |
O1W—H2W···Cl2 | 0.84 (2) | 2.33 (2) | 3.1639 (12) | 170 (2) |
O2A—H2A···Cl1i | 0.82 | 2.18 | 2.9948 (11) | 177 |
O2B—H2B···O1Wi | 0.82 | 1.78 | 2.5818 (15) | 166 |
N3B—H3B2···O1B | 0.86 | 2.10 | 2.7176 (17) | 128 |
N3B—H3B2···O1Aii | 0.86 | 2.25 | 2.9903 (17) | 144 |
N3A—H3A2···O1A | 0.86 | 2.04 | 2.6644 (16) | 129 |
N3A—H3A2···O1Bii | 0.86 | 2.17 | 2.8781 (17) | 140 |
N3A—H3A1···Cl2iii | 0.86 | 2.34 | 3.1447 (13) | 156 |
N4A—H4A···Cl2iii | 0.86 | 2.44 | 3.2265 (12) | 152 |
N4B—H4B···Cl2 | 0.86 | 2.21 | 3.0510 (13) | 166 |
C5A—H5A···Cl1 | 0.93 | 2.82 | 3.5417 (15) | 135 |
C6A—H6A···O1Wiv | 0.93 | 2.55 | 3.427 (2) | 158 |
C7A—H7A···O2A | 0.93 | 2.42 | 2.7397 (17) | 100 |
C7B—H7B···O2B | 0.93 | 2.37 | 2.7065 (17) | 101 |
Symmetry codes: (i) x, y, z−1; (ii) −x, −y+1, −z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C6H7N2O2+·Cl−·0.5H2O |
Mr | 183.60 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 180 |
a, b, c (Å) | 7.8949 (4), 9.1639 (5), 11.0285 (6) |
α, β, γ (°) | 81.392 (4), 81.276 (3), 81.682 (4) |
V (Å3) | 773.68 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.45 |
Crystal size (mm) | 0.1 × 0.08 × 0.06 |
Data collection | |
Diffractometer | Agilent Xcalibur Sapphire1 long-nozzle diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2011) |
Tmin, Tmax | 0.831, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14449, 3600, 2857 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.08, 1.01 |
No. of reflections | 3600 |
No. of parameters | 214 |
No. of restraints | 3 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.26, −0.28 |
Computer programs: CrysAlis PRO (Agilent, 2011), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W···Cl1 | 0.854 (14) | 2.240 (14) | 3.0887 (12) | 172.6 (16) |
O1W—H2W···Cl2 | 0.844 (15) | 2.330 (15) | 3.1639 (12) | 170.1 (15) |
O2A—H2A···Cl1i | 0.8200 | 2.1800 | 2.9948 (11) | 177.00 |
O2B—H2B···O1Wi | 0.8200 | 1.7800 | 2.5818 (15) | 166.00 |
N3B—H3B2···O1B | 0.8600 | 2.1000 | 2.7176 (17) | 128.00 |
N3B—H3B2···O1Aii | 0.8600 | 2.2500 | 2.9903 (17) | 144.00 |
N3A—H3A2···O1A | 0.8600 | 2.0400 | 2.6644 (16) | 129.00 |
N3A—H3A2···O1Bii | 0.8600 | 2.1700 | 2.8781 (17) | 140.00 |
N3A—H3A1···Cl2iii | 0.8600 | 2.3400 | 3.1447 (13) | 156.00 |
N4A—H4A···Cl2iii | 0.8600 | 2.4400 | 3.2265 (12) | 152.00 |
N4B—H4B···Cl2 | 0.8600 | 2.2100 | 3.0510 (13) | 166.00 |
Symmetry codes: (i) x, y, z−1; (ii) −x, −y+1, −z; (iii) −x, −y+1, −z+1. |
Acknowledgements
We are grateful to all personel of the LCATM laboratory, Université Oum El Bouaghi, Algérie for their assistance. Thanks are due to MESRS and ANDRU (Ministére de l'Enseignement Supérieur et de la Recherche Scientifique et l'Agence Nationale pour le Développement de la Recherche Universitaire (ANDRU) - Algérie) via the PNR programme for financial support.
References
Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Akriche, S. & Rzaigui, M. (2007). Acta Cryst. E63, o3460. Web of Science CSD CrossRef IUCr Journals Google Scholar
Asaji, T., Eda, K., Fujimori, H., Adachi, T., Shibusawa, T. & Oguni, M. (2007). J. Mol. Struct. 826, 24–28. Web of Science CSD CrossRef CAS Google Scholar
Beatty, A. M. (2003). Coord. Chem. Rev., 246, 131–143. Web of Science CrossRef CAS Google Scholar
Berrah, F., Bouacida, S. & Roisnel, T. (2011c). Acta Cryst. E67, o2057–o2058. Web of Science CSD CrossRef IUCr Journals Google Scholar
Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o953–o954. Web of Science CrossRef IUCr Journals Google Scholar
Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o525–o526. Web of Science CrossRef IUCr Journals Google Scholar
Bouacida, S. (2008). PhD thesis, Montouri–Constantine University, Algeria. Google Scholar
Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany. Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388. Web of Science CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Kickelbick, G. (2007). In Hybrid Materials: Synthesis, Characterization and Applications. Weinheim: Wiley-VCH. Google Scholar
Lynch, D. E. & Jones, G. D. (2004). Acta Cryst. B60, 748–754. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mitzi, D. B., Liang, K. & Wang, S. (1998). Inorg. Chem. 37, 321–327. Web of Science CSD CrossRef CAS Google Scholar
Sengupta, P., Dinda, R., Ghosh, S. & Sheldrick, W. S. (2001). Polyhedron, 20, 3349–3354. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organic-inorganic hybrid compounds represent one of the most important developments in materials chemistry in recent years. The tremendous possibilities of combination of different properties in one material initiated an explosion of ideas about potential materials and applications (Bouacida, 2008; Kickelbick, 2007; Mitzi et al., 1998). Hybrid structures including substituted pyridines organic units have drawn increasing attention due to their potential applications in biological and industrial fields (Asaji et al., 2007; Lynch & Jones, 2004), nitrogen in the pyridine ring has a lone pair of electrons which is not delocalized with the aromatic π-electron system and is easily available for protonation (Berrah et al., 2011a). In the presence of a carboxylic acid substituent, they are recognized as efficient N–O donors exhibiting diverse mode of coordination (Beatty, 2003; Sengupta et al., 2001). Their fascinating structures are rich in H-bonds wich have a potential importance in crystal stability (Berrah et al., 2011a,b,c; Akriche & Rzaigui, 2007).
In continuation of our search to enrich the varieties in such kinds of hybrid compounds and to investigate the influence of hydrogen bonds on the structural features, we report here the synthesis and crystal structure of 2-amino-3-carboxypyridinium chloride hemi hydrate, (I).
The asymmetric unit in this compound consists of two protonated, "2-amino-3-carboxypyridine", amino acids cations (A and B), two chloride anions and one molecule of water. The molecular geometry and the atom-numbering scheme of (I) are shown in Fig. 1. Bond distances and angles observed in the different entities, present no unusual features and are consistent with those reported previously (Berrah et al., 2011b). The crystal packing can be described as alternating layers parallel to (110) plane, which are linked together by O1W—H···Cl interactions involving molecule of water and anions chloride (Fig.2). In this structure, four types of classical hydrogen bonds are observed, viz. cation-anion [O—H···Cl & N—H···Cl], cation-cation [N—H···O], cation-water [N—H···O1W] and water-anion [O1W—H···Cl] (Fig. 3). All these interactions bonds link the molecules within the layers and also link the layers together, forming a three-dimensional network and reinforcing the cohesion of the structure. Additional hydrogen bond parameters are listed in table 1.