inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages i27-i28

Li­thio­tantite, ideally LiTa3O8

aInstituto de Geociências, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627,31270-901, Belo Horizonte, MG, Brazil, bDepartment of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, Arizona 85721-0077, USA, and cDepartamento de Fisica, Universidade Federal de Minas Gerais, CP 702, 30123-970, Belo Horizonte, MG, Brazil
*Correspondence e-mail: hyang@u.arizona.edu

(Received 9 March 2012; accepted 28 March 2012; online 4 April 2012)

Lithio­tantite (lithium tritantalum octa­oxide) and lithio­wodg­inite are natural dimorphs of LiTa3O8, corresponding to the laboratory-synthesized L-LiTa3O8 (low-temperature form) and M-LiTa3O8 (inter­mediate-temperature form) phases, respectively. Based on single-crystal X-ray diffraction data, this study presents the first structure determination of lithio­tantite from a new locality, the Murundu mine, Jenipapo District, Itinga, Minas Gerais, Brazil. Lithio­tantite is isotypic with LiNb3O8 and its structure is composed of a slightly distorted hexa­gonal close-packed array of O atoms stacked in the [-101] direction, with the metal atoms occupying half of the octa­hedral sites. There are four symmetrically non-equivalent cation sites, with three of them occupied mainly by (Ta5+ + Nb5+) and one by Li+. The four distinct octa­hedra share edges, forming two types of zigzag chains (A and B) extending along the b axis. The A chains are built exclusively of (Ta,Nb)O6 octa­hedra (M1 and M2), whereas the B chains consist of alternating (Ta,Nb)O6 and LiO6 octa­hedra (M3 and M4, respectively). The average M1—O, M2—O, M3—O and M4—O bond lengths are 2.011, 2.004, 1.984, and 2.188 Å, respectively. Among the four octa­hedra, M3 is the least distorted and M4 the most. The refined Ta contents at the M1, M2 and M3 sites are 0.641 (2), 0.665 (2), and 0.874 (2), respectively, indicating a strong preference of Ta5+ for M3 in the B chain. The refined composition of the crystal investigated is Li0.96Mn0.03Na0.01Nb0.82Ta2.18O8.

Related literature

For lithio­tantite and isostructural materials, see: Voloshin et al. (1983[Voloshin, A. V., Pakhomovskii, Y. A., Stepanov, V. I. & Tyusheva, F. N. (1983). Mineral. Zh. 5, 91-95.]); Lundberg (1971[Lundberg, M. (1971). Acta Chem. Scand. 25, 3337-3346.]); Gatehouse & Leverett (1972[Gatehouse, B. M. & Leverett, P. (1972). Cryst. Struct. Commun. 1, 83-86.]). For lithio­wodginite and wodginite-type materials, see: Voloshin et al. (1990[Voloshin, A. V., Pakhomovskii, Y. A. & Bakhchisaraitsev, A. Y. (1990). Mineral. Zh., 12, 94-100.]); Ferguson et al. (1976[Ferguson, R. B., Hawthorne, F. C. & Grice, J. D. (1976). Can. Mineral. 14, 550-560.]); Gatehouse et al. (1976[Gatehouse, B. M., Negas, T. & Roth, R. S. (1976). J. Solid State Chem. 18, 1-7.]); Santoro et al. (1977[Santoro, A., Roth, R. S. & Minor, D. (1977). Acta Cryst. B33, 3945-3947.]); Erict et al. (1992[Erict, T. S., Hawthorne, F. C. & Černý, P. (1992). Can. Mineral. 30, 597-611.]). For structural and phase-stability information on the LiTa3O8 system, see: Nord & Thomas (1978[Nord, A. G. & Thomas, J. O. (1978). Acta Chem. Scand. Ser. A, 32, 539-544.]); Fallon et al. (1979[Fallon, G. D., Gatehouse, B. M., Roth, R. S. & Roth, S. A. (1979). J. Solid State Chem. 27, 255-259.]); Hodeau et al. (1983[Hodeau, J. L., Marezio, M., Santoro, A. & Roth, R. S. (1983). Solid State Ionics, 9&10, 78-82.], 1984[Hodeau, J. L., Marezio, M., Santoro, A. & Roth, R. S. (1984). J. Solid State Chem. 51, 275-292.]); Allemann et al. (1996[Allemann, J. A., Xia, Y., Morriss, A. P., Wilkinson, A. P., Eckert, E., Speck, J. S., Levi, C. G. & Lange, F. F. (1996). J. Mater. Res. 11, 2376-2387.]). For properties and applications of LiTa3O8 and LiNb3O8, see: Subasri & Sreedharan (1997[Subasri, R. & Sreedharan, O. M. (1997). Mater. Lett. 30, 289-292.]); Akazawa & Shimada (2007[Akazawa, H. & Shimada, M. (2007). J. Mater. Res. 22, 1726-1736.]); Zhang et al. (2008[Zhang, D., Huang, D., Li, J. & Li, K. (2008). J. Inorg. Mater. 23, 1106-1110.]); Muller et al. (2011[Muller, H. G., Stapleton, A. D., Foran, B. J., Radhakrishnan, G., Kim, H. I., Adams, P. M., Lipeles, R. A. & Herman, P. (2011). J. Appl. Phys. 110, 033539 (1-7).]). For the definition of polyhedral distortion, see: Robinson et al. (1971[Robinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567-570.]).

Experimental

Crystal data
  • Li0.96Mn0.03Na0.01Nb0.82Ta2.18O8

  • Mr = 607.20

  • Monoclinic, P 21 /c

  • a = 7.4425 (4) Å

  • b = 5.0493 (3) Å

  • c = 15.2452 (7) Å

  • β = 107.381 (3)°

  • V = 546.75 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 45.28 mm−1

  • T = 293 K

  • 0.06 × 0.05 × 0.05 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2005[Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.]) Tmin = 0.172, Tmax = 0.211

  • 8136 measured reflections

  • 1983 independent reflections

  • 1683 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.058

  • S = 1.35

  • 1983 reflections

  • 71 parameters

  • 1 restraint

  • Δρmax = 2.02 e Å−3

  • Δρmin = −1.92 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003[Downs, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247-250.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The outstanding electro-optical properties of lithium tantalate, LiTa3O8, and lithium niobate, LiNb3O8, have made them leading functional materials for numerous applications, such as electro-optic modulators, surface acoustic wave devices, frequency-doubled lasers, second-harmonic generators, beam deflectors, waveguides, and holographic data processing devices (e.g., Subasri & Sreedharan, 1997; Akazawa & Shimada, 2007; Zhang et al., 2008; Muller et al., 2011). However, unlike LiNb3O8, which maintains the P21/c symmetry up to its incongruent melting point, LiTa3O8 is trimorphic, depending on its formation temperature (Allemann et al., 1996). Below 1063 K, LiTa3O8 crystallizes in the P21/c symmetry (designated as L-LiTa3O8). Above 1063 K, L-LiTa3O8 transforms irreversibly to the intermediate-temperature C2/c form (M-LiTa3O8), which further transforms irreversibly to the high-temperature Pmmn structure (H-LiTa3O8) above 1393 K.

The crystal structure of M-LiTa3O8 was first determined by Gatehouse et al. (1976), who showed it to be monoclinic with space group C2/c and unit-cell parameters a =9.413 (5), b = 11.522 (6), c = 5.050 (3) Å, β = 91.1 (1)°. This phase is isotypic with the mineral wodginite, MnSnTa2O8 (Ferguson et al., 1976; Erict et al., 1992). A further refinement of the M-LiTa3O8 structure by Santoro et al. (1977) using neutron powder-diffraction data located the Li atom, which was not found in the X-ray diffraction study by Gatehouse et al. (1976). In contrast, the structure of H-LiTa3O8 has been investigated quite intensively, confirming its real symmetry to be Pmmn with unit-cell parameters a =16.718 (2), b = 7.696 (1), c = 8.931 (1) Å (Hodeau et al., 1983, 1984), rather than Pmma with unit-cell parameters a =16.702 (8), b = 3.840 (4), c = 8.929 (5) Å (Nord & Thomas, 1978; Fallon et al., 1979). Yet, no structure study has been reported for L-LiTa3O8 thus far. From rotation and Weissenberg photographic measurements, Gatehouse & Leverett (1972) obtained unit-cell parameters a = 7.41 (5), b = 5.10 (6), c = 15.12 (10) Å, β = 107.2 (1)°, and space group P21/c for L-LiTa3O8, suggesting that this phase is the Ta-analogue of LiNb3O8 (Lundberg, 1971). Interestingly, Voloshin et al. (1983) described a new mineral, lithiotantite, with the empirical chemical formula Li0.92(Ta1.90Nb1.10Sn0.02)Σ=3.02O8 or ideally LiTa3O8, from granite pegmatites in Eastern Kazakhstan. The new mineral possesses space group P21/c and unit-cell parameters a = 7.444, b = 5.044, c = 15.255 Å, β = 107.18°. Although all reported crystallographic data suggest that lithiotantite is actually L-LiTa3O8, it is unclear how Nb in the natural sample is distributed among three cation sites found in the isostructural LiNb3O8 (Lundberg, 1971). On the basis of single-crystal X-ray diffraction data, this study reports the first structure refinement of lithiotantite found from a new locality, the Jenipapo District, Itinga, Minas Gerais, Brazil.

Lithiotantite is isotypic with LiNb3O8 (Lundberg, 1971; Gatehouse & Leverett, 1972). Its structure consists of a slightly distorted hexagonal close-packed array of oxygen atoms stacked in the [-1 0 1] direction, with the metal atoms occupying half of the octahedral sites. There are four symmetrically nonequivalent cation sites, M1, M2, M3, and M4 (Fig. 1), with the first three occupied mainly by (Ta + Nb) and the last one by Li. The four distinct octahedra share edges to form two types of zigzag chains (A- and B-chains) extending along the b axis (Fig. 2). The A-chains are built exclusively of (Ta,Nb)O6 octahedra (M1 and M2), whereas the B-chains consist of alternating (Ta,Nb)O6 and LiO6 octahedra (M3 and M4, respectively). The refined Ta contents are 0.641 (2), 0.665 (2), and 0.874 (2) for M1, M2, and M3, respectively, indicating a relatively strong preference of Ta5+ on M3 over M1 or M2. The average M1—O, M2—O, M3—O, and M4—O bond distances are 2.011, 2.004, 1.984, and 2.188 Å, respectively. Among the four octahedra, M4 is the most distorted and M3 the least, as measured by the values of the octahedral angle variance (OAV) (Robinson et al., 1971), which are 88, 81, 35, and 98° for the M1, M2, M3, and M4 octahedra, respectively. This observation is the direct consequence of the octahedral linkage within the two different chains. In the B-chain, the M4 octahedron occupied primarily by Li+ is by far more weakly-bonded than M3 occupied by (Ta5+ + Nb5+). Hence, for the two octahedra to share edges to form the chains, the relatively large M4 octahedron has to make more adjustments to fit to the configuration of the M3 octahedron and to minimize the cation-cation repulsion across the shared edges, thus resulting in its greater distortion. For the M1 and M2 octahedra that are occupied by the similar ratios of Ta/Nb, the cation-cation repulsion between the two across the shared edges is markedly stronger than that between M3 and M4. Therefore, the M1 and M2 octahedra exhibit similar OAV values and are more distorted than M3.

Gatehouse et al. (1976) demonstrated that M-LiTa3O8 is isomorphous with the mineral wodginite and presented a comprehensive structural comparison between M-LiTa3O8 and LiNb3O8. The mineral lithiowodginite, ideally LiTa3O8, a member of the wodginite group, was later described by Voloshin et al. (1990). With the discovery of lithiotantite (Voloshin et al., 1983), isostructural with L-LiTa3O8 and LiNb3O8, one may postulate the possible existence of a natural LiTa3O8 phase with the H-LiTa3O8-type structure, as well as a natural Nb-analogue of lithiotantite.

Related literature top

For lithiotantite and isostructural materials, see: Voloshin et al. (1983); Lundberg (1971); Gatehouse & Leverett (1972). For lithiowodginite and wodginite-type materials, see: Voloshin et al. (1990); Ferguson et al. (1976); Gatehouse et al. (1976); Santoro et al. (1977); Erict et al. (1992). For structural and phase-stability information on the LiTa3O8 system, see: Nord & Thomas (1978); Fallon et al. (1979); Hodeau et al. (1983, 1984); Allemann et al. (1996). For properties and applications of LiTa3O8 and LiNb3O8, see: Subasri & Sreedharan (1997); Akazawa & Shimada (2007); Zhang et al. (2008); Muller et al. (2011). For the definition of polyhedral distortion, see: Robinson et al. (1971).

Experimental top

The lithiotantite specimen used in this study is from the Murundu mine, the Jenipapo District, Itinga, Minas Gerais, Brazil and is in the collection of the RRUFF project (deposition No. R100165; http://rruff.info). Its chemical composition was analyzed with a Jeol JXA-8900 electron microprobe at the conditions of 20 kV and 25 nA. Counting times on peaks and backgrounds of the X-ray lines were 10 and 5 s, respectively. Raw data were corrected using the PRZ procedure, which gave (wt%) Ta2O5 = 78.5 (9), Nb2O5 = 17.1 (7), SnO2 = 0.7 (3), MnO = 0.20 (10), FeO = 0.06 (3), Na2O = 0.06 (3) (average of 9 analysis points). Li2O was added to bring the total cation sums to 4.0 based on 8 O atoms, while maintaining the charge balance, yielding a chemical formula (Li0.96Na0.01Mn2+0.02Fe2+0.01)~Σ=1.00(Ta2.18Nb0.79Sn0.03)Σ=3.00O8.

Refinement top

For simplicity, during the structure refinement, the trace amount of Fe was treated as Mn, and Sn (0.03 apfu) as Nb, giving rise to a structural formula (Li0.96Na0.01Mn2+0.03)Σ=1.00(Ta2.18Nb0.83)Σ=3.00O8, which was used throughout the structure refinements. Because a preliminary refinement showed that anisotropic displacement parameters were non-positive defined for M4 (mainly Li) and two O atoms, due most likely to the obvious inhomogeneity of the studied samples (Fig. 3), M4 and all O atoms were refined with isotropic displacement parameters only. In Figure 3, the contrast in darkness reflects the relative distribution of Ta vs. Nb in the sample. The distributions of Ta and Nb among the three octahedral sites were refined with their total amounts constrained to the above simplified formula. The final refinement indicates relatively large GOF value. We attempted to refine the Li position with a split-site model (or disordered model). Although the final R factor was slightly reduced from 0.0273 to 0.0271, the GOF value is essentially unchanged (still above 1.3). We tried to omit six bad reflections with Fo2-Fc2 > 7.0, but still failed to improve the GOF value. Even with the model of the split Li positions, the anisotropic displacement for Li is still non-positive definite. Thus, we believe that all of these may result from the obvious inhomogeneities of our natural sample. In the past, we have noticed that a structure refinement may give rise to a large GOF value when the sample is not homogenous (like our current case, or with fine exsolutions, or badly twinned). In addition, we also tried to allow all oxygen atoms to be refined with anisotropic displacements. Yet, that only reduced the R factor to 0.0268 and the Li atom is still non-positive definite. The highest residual peak in the difference Fourier maps was located at (0.4240, 0.2970, 0.2913), 0.78 Å from M3, and the deepest hole at (0.0221, 0.1663, 0.3115), 0.64 Å from M2.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XtalDraw (Downs & Hall-Wallace, 2003); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Crystal structure of lithiotantite viewed along [010]. Red spheres represent oxygen atoms. The purple, pale blue, yellow, and red octahedra represent M1, M2, M3, and M4 octahedra, respectively.
[Figure 2] Fig. 2. A slice of the lithiotantite structure showing the two types of zigzag edge-shared octahedral chains. All color coding and symbols are as in Figure 1.
[Figure 3] Fig. 3. A back scattering electron image of the lithiotantite sample, showing the obvious chemical inhomogeneity of the studied sample. The contrast in darkness reflects the relative distribution of Ta vs. Nb in the sample.
lithium tritantalum octaoxide top
Crystal data top
LiTa3O8F(000) = 1042
Mr = 607.20Dx = 7.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2589 reflections
a = 7.4425 (4) Åθ = 2.8–32.6°
b = 5.0493 (3) ŵ = 45.28 mm1
c = 15.2452 (7) ÅT = 293 K
β = 107.381 (3)°Cuboid, red–brown
V = 546.75 (5) Å30.06 × 0.05 × 0.05 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1983 independent reflections
Radiation source: fine-focus sealed tube1683 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scanθmax = 32.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
h = 1011
Tmin = 0.172, Tmax = 0.211k = 77
8136 measured reflectionsl = 2223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 w = 1/[σ2(Fo2) + (0.0077P)2 + 6.6039P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.058(Δ/σ)max = 0.002
S = 1.35Δρmax = 2.02 e Å3
1983 reflectionsΔρmin = 1.92 e Å3
71 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.00065 (6)
Crystal data top
LiTa3O8V = 546.75 (5) Å3
Mr = 607.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4425 (4) ŵ = 45.28 mm1
b = 5.0493 (3) ÅT = 293 K
c = 15.2452 (7) Å0.06 × 0.05 × 0.05 mm
β = 107.381 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1983 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
1683 reflections with I > 2σ(I)
Tmin = 0.172, Tmax = 0.211Rint = 0.027
8136 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02871 parameters
wR(F2) = 0.0581 restraint
S = 1.35Δρmax = 2.02 e Å3
1983 reflectionsΔρmin = 1.92 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
TAM10.74765 (4)0.24400 (7)0.07791 (2)0.00508 (9)0.641 (2)
NBM10.74765 (4)0.24400 (7)0.07791 (2)0.00508 (9)0.359 (2)
TAM20.98987 (4)0.24084 (6)0.33689 (2)0.00466 (9)0.665 (2)
NBM20.98987 (4)0.24084 (6)0.33689 (2)0.00466 (9)0.335 (2)
TAM30.50096 (4)0.23890 (6)0.333006 (18)0.00528 (8)0.874 (2)
NBM30.50096 (4)0.23890 (6)0.333006 (18)0.00528 (8)0.126 (2)
LIM40.2391 (10)0.2561 (17)0.0794 (5)0.0030 (13)*0.96
MNM40.2391 (10)0.2561 (17)0.0794 (5)0.0030 (13)*0.03
NAM40.2391 (10)0.2561 (17)0.0794 (5)0.0030 (13)*0.01
O10.0002 (7)0.0608 (9)0.0979 (3)0.0064 (8)*
O20.4176 (7)0.0670 (9)0.2181 (3)0.0059 (8)*
O30.7653 (7)0.1008 (9)0.3443 (3)0.0073 (8)*
O40.5368 (7)0.4210 (9)0.1011 (3)0.0064 (8)*
O50.9144 (7)0.4112 (9)0.2154 (3)0.0054 (8)*
O60.6436 (7)0.3931 (9)0.4606 (3)0.0078 (9)*
O70.8524 (7)0.5637 (9)0.0489 (3)0.0073 (8)*
O80.2755 (7)0.4123 (9)0.3444 (3)0.0063 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
TAM10.00614 (14)0.00390 (13)0.00485 (14)0.00065 (10)0.00108 (10)0.00033 (10)
NBM10.00614 (14)0.00390 (13)0.00485 (14)0.00065 (10)0.00108 (10)0.00033 (10)
TAM20.00518 (14)0.00380 (13)0.00496 (14)0.00056 (11)0.00143 (10)0.00038 (11)
NBM20.00518 (14)0.00380 (13)0.00496 (14)0.00056 (11)0.00143 (10)0.00038 (11)
TAM30.00517 (12)0.00520 (12)0.00565 (13)0.00042 (10)0.00190 (9)0.00014 (10)
NBM30.00517 (12)0.00520 (12)0.00565 (13)0.00042 (10)0.00190 (9)0.00014 (10)
Geometric parameters (Å, º) top
TAM1—O6i1.857 (5)TAM3—O21.886 (5)
TAM1—O71.901 (5)TAM3—O81.946 (5)
TAM1—O41.929 (5)TAM3—O4iii1.957 (5)
TAM1—O1ii2.034 (5)TAM3—O2iv2.000 (5)
TAM1—O8iii2.088 (5)TAM3—O32.045 (5)
TAM1—O52.257 (5)TAM3—O62.070 (5)
TAM2—O31.849 (5)LIM4—O7vi2.079 (9)
TAM2—O1iv1.887 (5)LIM4—O3iv2.099 (10)
TAM2—O51.965 (5)LIM4—O12.124 (9)
TAM2—O7v1.997 (5)LIM4—O6iii2.194 (9)
TAM2—O5v2.063 (5)LIM4—O42.296 (9)
TAM2—O8ii2.266 (5)LIM4—O22.338 (9)
O6i—TAM1—O7100.1 (2)O2—TAM3—O8103.7 (2)
O6i—TAM1—O4102.8 (2)O2—TAM3—O4iii92.4 (2)
O7—TAM1—O493.5 (2)O8—TAM3—O4iii93.6 (2)
O6i—TAM1—O1ii94.3 (2)O2—TAM3—O2iv94.20 (11)
O7—TAM1—O1ii89.79 (19)O8—TAM3—O2iv91.82 (19)
O4—TAM1—O1ii161.7 (2)O4iii—TAM3—O2iv170.2 (2)
O6i—TAM1—O8iii99.5 (2)O2—TAM3—O387.9 (2)
O7—TAM1—O8iii157.2 (2)O8—TAM3—O3168.3 (2)
O4—TAM1—O8iii93.33 (19)O4iii—TAM3—O387.65 (19)
O1ii—TAM1—O8iii77.25 (18)O2iv—TAM3—O385.38 (19)
O6i—TAM1—O5171.61 (19)O2—TAM3—O6168.6 (2)
O7—TAM1—O575.44 (18)O8—TAM3—O687.8 (2)
O4—TAM1—O584.71 (19)O4iii—TAM3—O686.45 (19)
O1ii—TAM1—O578.70 (18)O2iv—TAM3—O685.68 (19)
O8iii—TAM1—O583.60 (17)O3—TAM3—O680.72 (19)
O3—TAM2—O1iv100.9 (2)O7vi—LIM4—O3iv95.9 (4)
O3—TAM2—O5102.5 (2)O7vi—LIM4—O1106.0 (4)
O1iv—TAM2—O594.4 (2)O3iv—LIM4—O199.2 (4)
O3—TAM2—O7v94.7 (2)O7vi—LIM4—O6iii98.6 (4)
O1iv—TAM2—O7v90.2 (2)O3iv—LIM4—O6iii157.0 (4)
O5—TAM2—O7v161.0 (2)O1—LIM4—O6iii93.9 (4)
O3—TAM2—O5v97.94 (19)O7vi—LIM4—O490.4 (3)
O1iv—TAM2—O5v158.6 (2)O3iv—LIM4—O478.1 (3)
O5—TAM2—O5v91.34 (11)O1—LIM4—O4163.5 (4)
O7v—TAM2—O5v78.15 (19)O6iii—LIM4—O484.0 (3)
O3—TAM2—O8ii173.9 (2)O7vi—LIM4—O2165.3 (4)
O1iv—TAM2—O8ii75.98 (18)O3iv—LIM4—O286.4 (3)
O5—TAM2—O8ii83.12 (18)O1—LIM4—O287.9 (3)
O7v—TAM2—O8ii80.15 (19)O6iii—LIM4—O275.2 (3)
O5v—TAM2—O8ii84.29 (18)O4—LIM4—O275.8 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y, z; (iii) x+1, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2; (v) x+2, y1/2, z+1/2; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaLiTa3O8
Mr607.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.4425 (4), 5.0493 (3), 15.2452 (7)
β (°) 107.381 (3)
V3)546.75 (5)
Z4
Radiation typeMo Kα
µ (mm1)45.28
Crystal size (mm)0.06 × 0.05 × 0.05
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2005)
Tmin, Tmax0.172, 0.211
No. of measured, independent and
observed [I > 2σ(I)] reflections
8136, 1983, 1683
Rint0.027
(sin θ/λ)max1)0.757
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.058, 1.35
No. of reflections1983
No. of parameters71
No. of restraints1
Δρmax, Δρmin (e Å3)2.02, 1.92

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XtalDraw (Downs & Hall-Wallace, 2003), publCIF (Westrip, 2010).

 

Acknowledgements

The authors gratefully acknowledge support of this study by the Arizona Science Foundation.

References

First citationAkazawa, H. & Shimada, M. (2007). J. Mater. Res. 22, 1726–1736.  Web of Science CrossRef CAS Google Scholar
First citationAllemann, J. A., Xia, Y., Morriss, A. P., Wilkinson, A. P., Eckert, E., Speck, J. S., Levi, C. G. & Lange, F. F. (1996). J. Mater. Res. 11, 2376–2387.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDowns, R. T. & Hall-Wallace, M. (2003). Am. Mineral. 88, 247–250.  CAS Google Scholar
First citationErict, T. S., Hawthorne, F. C. & Černý, P. (1992). Can. Mineral. 30, 597–611.  Google Scholar
First citationFallon, G. D., Gatehouse, B. M., Roth, R. S. & Roth, S. A. (1979). J. Solid State Chem. 27, 255–259.  CrossRef CAS Web of Science Google Scholar
First citationFerguson, R. B., Hawthorne, F. C. & Grice, J. D. (1976). Can. Mineral. 14, 550–560.  Google Scholar
First citationGatehouse, B. M. & Leverett, P. (1972). Cryst. Struct. Commun. 1, 83–86.  CAS Google Scholar
First citationGatehouse, B. M., Negas, T. & Roth, R. S. (1976). J. Solid State Chem. 18, 1–7.  CrossRef CAS Web of Science Google Scholar
First citationHodeau, J. L., Marezio, M., Santoro, A. & Roth, R. S. (1983). Solid State Ionics, 9&10, 78-82.  Google Scholar
First citationHodeau, J. L., Marezio, M., Santoro, A. & Roth, R. S. (1984). J. Solid State Chem. 51, 275–292.  CrossRef CAS Web of Science Google Scholar
First citationLundberg, M. (1971). Acta Chem. Scand. 25, 3337–3346.  CrossRef CAS Web of Science Google Scholar
First citationMuller, H. G., Stapleton, A. D., Foran, B. J., Radhakrishnan, G., Kim, H. I., Adams, P. M., Lipeles, R. A. & Herman, P. (2011). J. Appl. Phys. 110, 033539 (1–7).  Google Scholar
First citationNord, A. G. & Thomas, J. O. (1978). Acta Chem. Scand. Ser. A, 32, 539–544.  CrossRef Web of Science Google Scholar
First citationRobinson, K., Gibbs, G. V. & Ribbe, P. H. (1971). Science, 172, 567–570.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSantoro, A., Roth, R. S. & Minor, D. (1977). Acta Cryst. B33, 3945–3947.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSubasri, R. & Sreedharan, O. M. (1997). Mater. Lett. 30, 289–292.  CrossRef CAS Web of Science Google Scholar
First citationVoloshin, A. V., Pakhomovskii, Y. A. & Bakhchisaraitsev, A. Y. (1990). Mineral. Zh., 12, 94–100.  CAS Google Scholar
First citationVoloshin, A. V., Pakhomovskii, Y. A., Stepanov, V. I. & Tyusheva, F. N. (1983). Mineral. Zh. 5, 91–95.  CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, D., Huang, D., Li, J. & Li, K. (2008). J. Inorg. Mater. 23, 1106–1110.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages i27-i28
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds