organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1357

Lurasidone hydro­chloride

aShanghai Institute of Pharmaceutical Industry, No. 1111, North ZhongShan No.1 Road, HongKou District, Shanghai 200437, People's Republic of China
*Correspondence e-mail: gongyierzu@126.com

(Received 29 February 2012; accepted 24 March 2012; online 13 April 2012)

In the crystal structure of the title compound, C28H37N4O2S+·Cl [systematic name: 4-(1,2-benzothia­zol-3-yl)-1-({2-[(3,5-dioxo-4-aza­tricyclo­[5.2.1.02,6]decan-4-yl)meth­yl]cyclo­hex­yl}meth­yl)piperazin-1-ium chloride], the anions and cations are linked by N—H⋯Cl hydrogen bonds. The crystal structure is further stabilized by C—H⋯π and C—H⋯O inter­actions.

Related literature

For the background to the biological activity of the title compound, an anti­psychotic drug, see: Ishibashi et al. (2002[Ishibashi, T., Horisawa, T., Yabuuchi, K., Tagashira, R. & Ohno, Y. (2002). Soc. Neurosci. Abstr. 894, 7.]); Ishiyama et al. (2003[Ishiyama, T., Matsumoto, Y., Tokuda, K., Horisawa, T., Tagashira, R., Toma, S. & Ohno, Y. (2003). Soc. Neurosci. Abstr. 835, 22.]); Ohno et al. (1997[Ohno, Y., Ishida, K., Ishibashi, T., Tojima, R., Yasui, J. & Nakamura, M. (1997). Int. Acad. Biomed. Drug Res. 11, 287-287.]).

[Scheme 1]

Experimental

Crystal data
  • C28H37N4O2S+·Cl

  • Mr = 529.13

  • Orthorhombic, P 21 21 21

  • a = 11.2039 (10) Å

  • b = 12.2665 (11) Å

  • c = 19.9774 (18) Å

  • V = 2745.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 293 K

  • 0.22 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.452, Tmax = 1.000

  • 15020 measured reflections

  • 5384 independent reflections

  • 4649 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.108

  • S = 1.10

  • 5384 reflections

  • 329 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2338 Friedel pairs

  • Flack parameter: 0.03 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the S1/ N4/C22/C23/C28 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Cl1 0.80 (2) 2.15 (2) 2.9426 (19) 168 (2)
C21—H21A⋯O1i 0.97 2.38 3.289 (3) 156
C5—H5ACgii 0.97 2.89 3.802 (4) 157
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Lurasidone hydrochloride is a benzisothiazole derivative and an atypical antipsychotic drug. This drug has high affinities for dopamine D2 (Ki =1.68nM), serotonin 5-HT2 A (Ki =2.03nM), 5-HT1 A (Ki =6.75nM), 5-HT7 receptors (Ki =0.495nM), and α2c adrenoceptor (Ki =10.8nM), but only weak or negligible interactions with serotonin 5-HT2c, histamine H1, acetylcholine M1 receptors, and α 1 adrenoceptor (Ishibashi et al., 2002; Ishiyama et al., 2003). Interestingly, despite its potent D2-blocking actions in vivo, Lurasidone has little propensity to induce extrapyramidal symptoms (Ohno et al., 1997).

The United States Food and Drug Administration (US FDA) approved Lurasidone hydrochloride (brand name: Latuda) in 2010 as an immediate release oral tablet for the treatment of schizophrenia. Lurasidone hydrochloride was developed by Dainippon Sumitomo Pharma in collaboration with Merck Research Laboratories during the initial IND stages. No data about crystal structure of Lurasidone hydrochloride has been reported yet.

Lurasidone hydrochloride consists of six chiral centres, e. g. C1, C2, C11, C12, C15 and C16. Currently, the clinically used form is a single isomer. The crystal structure of the title compound is built up of discrete lurasidium anions and chloride cations (Fig. 1).

There are two systems of hydrogen-bond interactions, viz. N2—H2A···Cl1 and C21—H21A···O1Ai [symmetry code: (i) x + 1/2, -y + 3/2, -z + 1] (Table 1 and Fig. 2).

The crystal structure is further stabilized by weak C—H···π interactions [symmetry code: 1/2 - x, 1 - y, -1/2 + z] between the cyclohexyl (C5—H5A) and the isothiazole ring.

Related literature top

For the background to the biological activity of the title compound, an antipsychotic drug, see: Ishibashi et al. (2002); Ishiyama et al. (2003); Ohno et al. (1997).

Experimental top

Lurasidone hydrochloride (10 g, 18.9 mmole) was dissolved in a hot solution in a 3:1 mixture of acetone and water. After cooling to ambient temperature, the solvent was allowed to evaporate slowly. Colourless crystals of (1) appeared after 5 days.

Refinement top

The coordinates of the N-bonded H-atom were refined with the N-H distance restrained to = 0.80 (2) Å. Uiso(H) was set to 1.2Ueq(N). H atoms attached to C atoms were positioned geometrically and treated as riding on their parent C atoms, with C—H = 0.97 Å and, Uiso(H) = 1.2Ueq(C) for methylene, C—H = 0.98 Å and Uiso = 1.2Ueq(C) for tert-methyl, and C—H = 0.93 Å and Uiso = 1.2Ueq(C) for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of lurasidone hydrochloride, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound, showing the N—H···Cl and C—H···O hydrogen bonds. Hydrogen bonds are shown as dashed lines and H atoms not involved in hydrogen bonding have been omitted for clarity. Only atoms involved in hydrogen bonding have been labelled.
4-(1,2-benzothiazol-3-yl)-1-({2-[(3,5-dioxo-4-azatricyclo[5.2.1.02,6]decan- 4-yl)methyl]cyclohexyl}methyl)piperazin-1-ium chloride top
Crystal data top
C28H37N4O2S+·ClF(000) = 1128
Mr = 529.13Dx = 1.280 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3969 reflections
a = 11.2039 (10) Åθ = 4.9–45.2°
b = 12.2665 (11) ŵ = 0.25 mm1
c = 19.9774 (18) ÅT = 293 K
V = 2745.5 (4) Å3Prismatic, colourless
Z = 40.22 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5384 independent reflections
Radiation source: fine-focus sealed tube4649 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.452, Tmax = 1.000k = 1515
15020 measured reflectionsl = 2413
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.004P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
5384 reflectionsΔρmax = 0.24 e Å3
329 parametersΔρmin = 0.14 e Å3
1 restraintAbsolute structure: Flack (1983), 2338 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (6)
Crystal data top
C28H37N4O2S+·ClV = 2745.5 (4) Å3
Mr = 529.13Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.2039 (10) ŵ = 0.25 mm1
b = 12.2665 (11) ÅT = 293 K
c = 19.9774 (18) Å0.22 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
5384 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4649 reflections with I > 2σ(I)
Tmin = 0.452, Tmax = 1.000Rint = 0.028
15020 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.108Δρmax = 0.24 e Å3
S = 1.10Δρmin = 0.14 e Å3
5384 reflectionsAbsolute structure: Flack (1983), 2338 Friedel pairs
329 parametersAbsolute structure parameter: 0.03 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.68064 (7)0.23143 (5)0.79887 (4)0.0593 (2)
Cl10.24826 (6)0.28761 (6)0.52740 (4)0.0704 (2)
N10.43096 (19)0.85877 (16)0.44646 (11)0.0484 (5)
N20.44531 (15)0.44620 (14)0.52716 (10)0.0353 (4)
N30.54606 (16)0.38440 (15)0.65254 (10)0.0406 (5)
N40.60954 (19)0.24766 (16)0.72566 (11)0.0499 (5)
O10.25234 (18)0.94287 (16)0.46631 (10)0.0662 (5)
O20.62622 (17)0.81973 (17)0.42244 (12)0.0748 (6)
C10.3506 (2)0.67528 (19)0.41447 (13)0.0455 (6)
H10.40940.67370.37820.055*
C20.3346 (2)0.55930 (19)0.44089 (12)0.0438 (6)
H20.28240.56280.48020.053*
C30.2738 (3)0.4859 (2)0.38862 (17)0.0687 (9)
H3A0.32670.47700.35060.082*
H3B0.26030.41440.40800.082*
C40.1544 (3)0.5325 (3)0.36440 (19)0.0818 (10)
H4A0.11990.48460.33100.098*
H4B0.09920.53760.40170.098*
C50.1745 (3)0.6445 (3)0.33458 (17)0.0754 (9)
H5A0.09870.67500.32040.090*
H5B0.22560.63850.29560.090*
C60.2325 (2)0.7196 (2)0.38630 (15)0.0636 (8)
H6A0.17710.73070.42300.076*
H6B0.24730.79000.36580.076*
C70.3973 (2)0.75009 (19)0.46978 (14)0.0516 (6)
H7A0.33620.75740.50390.062*
H7B0.46630.71610.49040.062*
C80.4524 (2)0.50733 (18)0.46260 (13)0.0429 (6)
H8A0.47880.45780.42780.052*
H8B0.51210.56410.46690.052*
C90.3553 (2)0.9473 (2)0.44790 (14)0.0510 (6)
C100.5450 (2)0.8844 (2)0.42461 (14)0.0543 (7)
C110.5473 (2)1.0026 (2)0.40424 (16)0.0586 (7)
H110.60891.04290.42880.070*
C120.5566 (3)1.0230 (3)0.32838 (18)0.0724 (9)
H120.61710.97930.30530.087*
C130.5667 (3)1.1452 (3)0.3173 (2)0.0956 (13)
H13A0.58661.16160.27110.115*
H13B0.62691.17680.34630.115*
C140.4411 (3)1.1879 (3)0.3352 (2)0.0903 (11)
H14A0.44421.23810.37270.108*
H14B0.40431.22410.29720.108*
C150.3741 (3)1.0839 (2)0.35359 (16)0.0643 (8)
H150.28701.08960.35070.077*
C160.4211 (2)1.0450 (2)0.42160 (14)0.0555 (7)
H160.42371.10430.45440.067*
C170.4291 (3)1.0019 (3)0.30617 (16)0.0728 (9)
H17A0.41581.02010.25950.087*
H17B0.40330.92790.31510.087*
C180.4400 (2)0.51847 (18)0.58658 (12)0.0404 (5)
H18A0.36850.56290.58430.049*
H18B0.50850.56680.58650.049*
C190.4391 (2)0.4532 (2)0.65033 (12)0.0446 (6)
H19A0.43800.50180.68860.054*
H19B0.36810.40790.65210.054*
C200.5448 (2)0.30604 (19)0.59814 (12)0.0417 (5)
H20A0.47370.26110.60100.050*
H20B0.61410.25890.60120.050*
C210.54609 (19)0.36631 (17)0.53267 (12)0.0387 (5)
H21A0.62130.40490.52820.046*
H21B0.54070.31420.49630.046*
C220.5904 (2)0.35074 (19)0.71390 (12)0.0396 (5)
C230.63088 (19)0.42610 (19)0.76474 (12)0.0395 (5)
C240.6322 (2)0.5409 (2)0.76601 (13)0.0473 (6)
H240.60030.58090.73070.057*
C250.6813 (2)0.5925 (2)0.82006 (15)0.0597 (7)
H250.68160.66820.82150.072*
C260.7306 (3)0.5342 (3)0.87282 (15)0.0638 (8)
H260.76180.57160.90930.077*
C270.7342 (3)0.4226 (3)0.87204 (14)0.0601 (7)
H270.76920.38370.90680.072*
C280.6836 (2)0.3692 (2)0.81747 (12)0.0467 (6)
H2A0.3847 (16)0.4111 (16)0.5276 (12)0.037 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0766 (5)0.0453 (3)0.0561 (4)0.0030 (3)0.0137 (4)0.0137 (3)
Cl10.0561 (4)0.0614 (4)0.0938 (6)0.0249 (3)0.0178 (4)0.0066 (4)
N10.0479 (11)0.0405 (11)0.0569 (13)0.0061 (9)0.0117 (10)0.0027 (10)
N20.0285 (9)0.0358 (10)0.0417 (11)0.0027 (8)0.0012 (8)0.0007 (9)
N30.0380 (10)0.0405 (11)0.0432 (12)0.0105 (8)0.0033 (9)0.0032 (8)
N40.0570 (12)0.0400 (11)0.0526 (13)0.0056 (9)0.0067 (10)0.0059 (9)
O10.0633 (12)0.0681 (12)0.0673 (13)0.0200 (10)0.0118 (11)0.0036 (10)
O20.0536 (11)0.0732 (14)0.0975 (17)0.0233 (10)0.0105 (11)0.0050 (12)
C10.0471 (13)0.0446 (13)0.0449 (14)0.0025 (11)0.0076 (11)0.0008 (11)
C20.0406 (12)0.0459 (13)0.0450 (14)0.0031 (11)0.0008 (11)0.0026 (11)
C30.076 (2)0.0525 (16)0.077 (2)0.0086 (14)0.0293 (17)0.0018 (14)
C40.073 (2)0.082 (2)0.091 (2)0.0179 (18)0.0384 (18)0.0016 (19)
C50.0680 (19)0.081 (2)0.077 (2)0.0042 (17)0.0353 (17)0.0109 (18)
C60.0590 (16)0.0590 (17)0.073 (2)0.0048 (14)0.0211 (15)0.0119 (15)
C70.0556 (14)0.0452 (14)0.0540 (16)0.0078 (11)0.0112 (13)0.0038 (12)
C80.0435 (13)0.0404 (13)0.0449 (15)0.0001 (10)0.0051 (11)0.0032 (11)
C90.0523 (15)0.0498 (15)0.0510 (16)0.0121 (12)0.0094 (12)0.0058 (12)
C100.0453 (14)0.0578 (17)0.0598 (18)0.0073 (13)0.0163 (13)0.0028 (13)
C110.0479 (14)0.0548 (17)0.073 (2)0.0038 (12)0.0193 (14)0.0060 (14)
C120.0573 (17)0.081 (2)0.079 (2)0.0114 (16)0.0023 (16)0.0167 (18)
C130.075 (2)0.103 (3)0.109 (3)0.016 (2)0.015 (2)0.045 (2)
C140.104 (3)0.073 (2)0.094 (3)0.009 (2)0.015 (2)0.029 (2)
C150.0517 (15)0.0691 (18)0.072 (2)0.0122 (15)0.0086 (15)0.0186 (16)
C160.0628 (16)0.0418 (14)0.0618 (18)0.0080 (12)0.0131 (14)0.0058 (13)
C170.071 (2)0.090 (2)0.058 (2)0.0015 (17)0.0110 (16)0.0081 (17)
C180.0399 (12)0.0355 (12)0.0459 (14)0.0080 (10)0.0045 (11)0.0074 (10)
C190.0405 (12)0.0501 (14)0.0433 (14)0.0078 (11)0.0016 (11)0.0080 (11)
C200.0405 (12)0.0369 (12)0.0477 (14)0.0077 (10)0.0036 (11)0.0036 (10)
C210.0340 (11)0.0353 (11)0.0467 (14)0.0041 (9)0.0013 (10)0.0067 (11)
C220.0360 (11)0.0403 (12)0.0425 (14)0.0020 (10)0.0006 (10)0.0016 (11)
C230.0355 (11)0.0440 (13)0.0389 (13)0.0004 (10)0.0052 (10)0.0013 (10)
C240.0447 (13)0.0444 (13)0.0526 (16)0.0072 (11)0.0003 (12)0.0017 (12)
C250.0617 (16)0.0456 (14)0.072 (2)0.0017 (13)0.0015 (15)0.0155 (13)
C260.0681 (19)0.071 (2)0.0529 (18)0.0024 (16)0.0095 (15)0.0162 (15)
C270.0636 (17)0.0725 (19)0.0441 (16)0.0036 (15)0.0081 (13)0.0008 (14)
C280.0467 (13)0.0503 (14)0.0431 (14)0.0043 (11)0.0011 (12)0.0052 (11)
Geometric parameters (Å, º) top
S1—N41.677 (2)C11—C121.539 (5)
S1—C281.731 (3)C11—C161.546 (4)
Cl1—H2A2.152 (16)C11—H110.9800
N1—C91.378 (3)C12—C171.518 (4)
N1—C101.386 (3)C12—C131.519 (4)
N1—C71.462 (3)C12—H120.9800
N2—C181.483 (3)C13—C141.543 (5)
N2—C81.494 (3)C13—H13A0.9700
N2—C211.499 (3)C13—H13B0.9700
N2—H2A0.804 (15)C14—C151.526 (4)
N3—C221.386 (3)C14—H14A0.9700
N3—C201.451 (3)C14—H14B0.9700
N3—C191.466 (3)C15—C171.512 (4)
N4—C221.304 (3)C15—C161.533 (4)
O1—C91.212 (3)C15—H150.9800
O2—C101.208 (3)C16—H160.9800
C1—C21.528 (3)C17—H17A0.9700
C1—C71.529 (3)C17—H17B0.9700
C1—C61.537 (3)C18—C191.505 (4)
C1—H10.9800C18—H18A0.9700
C2—C81.528 (3)C18—H18B0.9700
C2—C31.538 (4)C19—H19A0.9700
C2—H20.9800C19—H19B0.9700
C3—C41.533 (4)C20—C211.502 (3)
C3—H3A0.9700C20—H20A0.9700
C3—H3B0.9700C20—H20B0.9700
C4—C51.513 (4)C21—H21A0.9700
C4—H4A0.9700C21—H21B0.9700
C4—H4B0.9700C22—C231.446 (3)
C5—C61.530 (4)C23—C281.395 (3)
C5—H5A0.9700C23—C241.409 (3)
C5—H5B0.9700C24—C251.367 (4)
C6—H6A0.9700C24—H240.9300
C6—H6B0.9700C25—C261.389 (4)
C7—H7A0.9700C25—H250.9300
C7—H7B0.9700C26—C271.369 (4)
C8—H8A0.9700C26—H260.9300
C8—H8B0.9700C27—C281.392 (4)
C9—C161.501 (4)C27—H270.9300
C10—C111.507 (4)
N4—S1—C2894.62 (11)C13—C12—H12114.9
C9—N1—C10113.2 (2)C11—C12—H12114.9
C9—N1—C7123.6 (2)C12—C13—C14103.5 (3)
C10—N1—C7123.0 (2)C12—C13—H13A111.1
C18—N2—C8113.15 (17)C14—C13—H13A111.1
C18—N2—C21111.25 (17)C12—C13—H13B111.1
C8—N2—C21110.59 (17)C14—C13—H13B111.1
C18—N2—H2A106.1 (17)H13A—C13—H13B109.0
C8—N2—H2A108.8 (17)C15—C14—C13102.7 (3)
C21—N2—H2A106.6 (16)C15—C14—H14A111.2
C22—N3—C20117.95 (18)C13—C14—H14A111.2
C22—N3—C19119.43 (19)C15—C14—H14B111.2
C20—N3—C19110.51 (18)C13—C14—H14B111.2
C22—N4—S1110.51 (17)H14A—C14—H14B109.1
C2—C1—C7110.4 (2)C17—C15—C14101.8 (3)
C2—C1—C6110.8 (2)C17—C15—C16102.0 (2)
C7—C1—C6110.3 (2)C14—C15—C16107.8 (3)
C2—C1—H1108.4C17—C15—H15114.6
C7—C1—H1108.4C14—C15—H15114.6
C6—C1—H1108.4C16—C15—H15114.6
C1—C2—C8112.67 (19)C9—C16—C15113.0 (2)
C1—C2—C3111.3 (2)C9—C16—C11105.0 (2)
C8—C2—C3109.3 (2)C15—C16—C11102.7 (2)
C1—C2—H2107.8C9—C16—H16111.9
C8—C2—H2107.8C15—C16—H16111.9
C3—C2—H2107.8C11—C16—H16111.9
C4—C3—C2112.5 (3)C15—C17—C1295.0 (3)
C4—C3—H3A109.1C15—C17—H17A112.7
C2—C3—H3A109.1C12—C17—H17A112.7
C4—C3—H3B109.1C15—C17—H17B112.7
C2—C3—H3B109.1C12—C17—H17B112.7
H3A—C3—H3B107.8H17A—C17—H17B110.2
C5—C4—C3109.5 (3)N2—C18—C19111.08 (18)
C5—C4—H4A109.8N2—C18—H18A109.4
C3—C4—H4A109.8C19—C18—H18A109.4
C5—C4—H4B109.8N2—C18—H18B109.4
C3—C4—H4B109.8C19—C18—H18B109.4
H4A—C4—H4B108.2H18A—C18—H18B108.0
C4—C5—C6110.1 (3)N3—C19—C18109.03 (19)
C4—C5—H5A109.6N3—C19—H19A109.9
C6—C5—H5A109.6C18—C19—H19A109.9
C4—C5—H5B109.6N3—C19—H19B109.9
C6—C5—H5B109.6C18—C19—H19B109.9
H5A—C5—H5B108.1H19A—C19—H19B108.3
C5—C6—C1113.6 (2)N3—C20—C21109.03 (18)
C5—C6—H6A108.9N3—C20—H20A109.9
C1—C6—H6A108.9C21—C20—H20A109.9
C5—C6—H6B108.9N3—C20—H20B109.9
C1—C6—H6B108.9C21—C20—H20B109.9
H6A—C6—H6B107.7H20A—C20—H20B108.3
N1—C7—C1113.9 (2)N2—C21—C20112.22 (18)
N1—C7—H7A108.8N2—C21—H21A109.2
C1—C7—H7A108.8C20—C21—H21A109.2
N1—C7—H7B108.8N2—C21—H21B109.2
C1—C7—H7B108.8C20—C21—H21B109.2
H7A—C7—H7B107.7H21A—C21—H21B107.9
N2—C8—C2114.13 (19)N4—C22—N3120.5 (2)
N2—C8—H8A108.7N4—C22—C23116.2 (2)
C2—C8—H8A108.7N3—C22—C23122.9 (2)
N2—C8—H8B108.7C28—C23—C24118.8 (2)
C2—C8—H8B108.7C28—C23—C22110.1 (2)
H8A—C8—H8B107.6C24—C23—C22130.9 (2)
O1—C9—N1123.8 (3)C25—C24—C23118.8 (2)
O1—C9—C16127.5 (2)C25—C24—H24120.6
N1—C9—C16108.7 (2)C23—C24—H24120.6
O2—C10—N1123.8 (3)C24—C25—C26121.4 (2)
O2—C10—C11127.6 (3)C24—C25—H25119.3
N1—C10—C11108.6 (2)C26—C25—H25119.3
C10—C11—C12115.1 (3)C27—C26—C25121.2 (3)
C10—C11—C16104.3 (2)C27—C26—H26119.4
C12—C11—C16103.2 (2)C25—C26—H26119.4
C10—C11—H11111.2C26—C27—C28117.9 (3)
C12—C11—H11111.2C26—C27—H27121.1
C16—C11—H11111.2C28—C27—H27121.1
C17—C12—C13101.3 (3)C27—C28—C23121.9 (2)
C17—C12—C11101.3 (2)C27—C28—S1129.4 (2)
C13—C12—C11108.0 (3)C23—C28—S1108.56 (18)
C17—C12—H12114.9
C28—S1—N4—C221.39 (19)C17—C15—C16—C977.6 (3)
C7—C1—C2—C863.5 (3)C14—C15—C16—C9175.6 (3)
C6—C1—C2—C8173.9 (2)C17—C15—C16—C1134.9 (3)
C7—C1—C2—C3173.3 (2)C14—C15—C16—C1171.8 (3)
C6—C1—C2—C350.7 (3)C10—C11—C16—C92.1 (3)
C1—C2—C3—C455.1 (3)C12—C11—C16—C9118.5 (2)
C8—C2—C3—C4179.9 (3)C10—C11—C16—C15120.4 (2)
C2—C3—C4—C558.4 (4)C12—C11—C16—C150.2 (3)
C3—C4—C5—C657.7 (4)C14—C15—C17—C1255.5 (3)
C4—C5—C6—C156.5 (4)C16—C15—C17—C1255.8 (3)
C2—C1—C6—C552.7 (3)C13—C12—C17—C1555.7 (3)
C7—C1—C6—C5175.3 (2)C11—C12—C17—C1555.5 (3)
C9—N1—C7—C194.0 (3)C8—N2—C18—C19177.22 (19)
C10—N1—C7—C190.2 (3)C21—N2—C18—C1952.0 (2)
C2—C1—C7—N1171.9 (2)C22—N3—C19—C18154.8 (2)
C6—C1—C7—N165.3 (3)C20—N3—C19—C1863.5 (3)
C18—N2—C8—C275.0 (2)N2—C18—C19—N357.8 (2)
C21—N2—C8—C2159.46 (19)C22—N3—C20—C21155.6 (2)
C1—C2—C8—N2136.8 (2)C19—N3—C20—C2162.0 (2)
C3—C2—C8—N298.9 (3)C18—N2—C21—C2051.2 (2)
C10—N1—C9—O1179.0 (3)C8—N2—C21—C20177.88 (18)
C7—N1—C9—O12.8 (4)N3—C20—C21—N255.6 (2)
C10—N1—C9—C162.6 (3)S1—N4—C22—N3172.05 (17)
C7—N1—C9—C16178.8 (2)S1—N4—C22—C231.0 (3)
C9—N1—C10—O2176.6 (3)C20—N3—C22—N412.3 (3)
C7—N1—C10—O20.4 (4)C19—N3—C22—N4126.7 (2)
C9—N1—C10—C114.1 (3)C20—N3—C22—C23160.2 (2)
C7—N1—C10—C11179.8 (2)C19—N3—C22—C2360.7 (3)
O2—C10—C11—C1270.7 (4)N4—C22—C23—C280.0 (3)
N1—C10—C11—C12108.6 (3)N3—C22—C23—C28172.9 (2)
O2—C10—C11—C16177.0 (3)N4—C22—C23—C24174.9 (2)
N1—C10—C11—C163.7 (3)N3—C22—C23—C242.1 (4)
C10—C11—C12—C1778.0 (3)C28—C23—C24—C252.4 (4)
C16—C11—C12—C1735.0 (3)C22—C23—C24—C25177.0 (2)
C10—C11—C12—C13176.0 (2)C23—C24—C25—C260.8 (4)
C16—C11—C12—C1371.0 (3)C24—C25—C26—C271.3 (4)
C17—C12—C13—C1435.3 (4)C25—C26—C27—C281.8 (4)
C11—C12—C13—C1470.7 (3)C26—C27—C28—C230.1 (4)
C12—C13—C14—C150.6 (4)C26—C27—C28—S1175.9 (2)
C13—C14—C15—C1734.5 (3)C24—C23—C28—C271.9 (4)
C13—C14—C15—C1672.4 (3)C22—C23—C28—C27177.6 (2)
O1—C9—C16—C1567.3 (4)C24—C23—C28—S1174.64 (18)
N1—C9—C16—C15111.0 (3)C22—C23—C28—S11.0 (2)
O1—C9—C16—C11178.5 (3)N4—S1—C28—C27177.6 (2)
N1—C9—C16—C110.1 (3)N4—S1—C28—C231.39 (19)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the S1/ N4/C22/C23/C28 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.80 (2)2.15 (2)2.9426 (19)168 (2)
C21—H21A···O1i0.972.383.289 (3)156
C5—H5A···Cgii0.972.893.802 (4)157
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC28H37N4O2S+·Cl
Mr529.13
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)11.2039 (10), 12.2665 (11), 19.9774 (18)
V3)2745.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.22 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.452, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15020, 5384, 4649
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.108, 1.10
No. of reflections5384
No. of parameters329
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.14
Absolute structureFlack (1983), 2338 Friedel pairs
Absolute structure parameter0.03 (6)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the S1/ N4/C22/C23/C28 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···Cl10.804 (15)2.152 (16)2.9426 (19)168 (2)
C21—H21A···O1i0.972.383.289 (3)156
C5—H5A···Cgii0.972.893.802 (4)157
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1/2, y+1, z1/2.
 

Acknowledgements

The authors thank the Shanghai Institute of Organic Chemistry for providing the infrastructure.

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIshibashi, T., Horisawa, T., Yabuuchi, K., Tagashira, R. & Ohno, Y. (2002). Soc. Neurosci. Abstr. 894, 7.  Google Scholar
First citationIshiyama, T., Matsumoto, Y., Tokuda, K., Horisawa, T., Tagashira, R., Toma, S. & Ohno, Y. (2003). Soc. Neurosci. Abstr. 835, 22.  Google Scholar
First citationOhno, Y., Ishida, K., Ishibashi, T., Tojima, R., Yasui, J. & Nakamura, M. (1997). Int. Acad. Biomed. Drug Res. 11, 287–287.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1357
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds