organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1429

1,3-Bis[(naphthalen-2-ylsulfan­yl)meth­yl]benzene

aInstituto de Química, Universidad Nacional Autónoma de México, Circuito exterior, Ciudad Universitaria, México, DF 04510, Mexico, and bCiencias Básicas e Ingeniería, Recursos de la Tierra, Universidad Autónoma Metropolitana, Av. Hidalgo Poniente, La Estación Lerma, Lerma de Villada, Estado de México, CP 52006, Mexico
*Correspondence e-mail: rrm@uaem.mx

(Received 22 March 2012; accepted 7 April 2012; online 18 April 2012)

Mol­ecules of the title compound, C28H22S2, are located on a crystallographic mirror plane with one half-mol­ecule in the asymmetric unit. The dihedral angle between the phenyl ring and the naphthyl unit is 83.14 (7)°. In the crystal, mol­ecules are inter­connected by C—H⋯S and C—H⋯π inter­actions.

Related literature

For information on pincer compounds, see: Albrecht & Morales-Morales (2009[Albrecht, M. & Morales-Morales, D. (2009). Iridium Complexes in Organic Synthesis, pp. 299-323. Germany: Wiley-VCH.]); Arroyo et al. (2003[Arroyo, M., Cervantes, R., Gómez-Benitez, V., López, P., Morales-Morales, D., Torrens, H. & Toscano, R. A. (2003). Synthesis, pp. 1565-1568.]); Morales-Morales (2004[Morales-Morales, D. (2004). Rev. Soc. Quim. Mex. 48, 338-346.], 2008[Morales-Morales, D. (2008). Modern Carbonylation Methods, pp. 20-64. Germany: Wiley-VCH.], 2009[Morales-Morales, D. (2009). Iridium Complexes in Organic Synthesis, pp. 325-344. Germany: Wiley-VCH.]); Morales-Morales & Jensen (2007[Morales-Morales, D. & Jensen, C. M. (2007). Editors. The Chemistry of Pincer Compounds. Amsterdam: Elsevier.]).

[Scheme 1]

Experimental

Crystal data
  • C28H22S2

  • Mr = 422.58

  • Orthorhombic, P n m a

  • a = 8.651 (2) Å

  • b = 41.235 (10) Å

  • c = 6.0517 (14) Å

  • V = 2158.9 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 298 K

  • 0.48 × 0.42 × 0.07 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: analytical (SADABS; Bruker; 2007[Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.893, Tmax = 0.979

  • 7907 measured reflections

  • 1994 independent reflections

  • 1345 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.124

  • S = 1.02

  • 1994 reflections

  • 139 parameters

  • H-atom parameters not refined

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C4/C2′/C3′ and C6–C9/C14/C15 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5B⋯S1i 0.97 2.86 3.806 (4) 164
C1—H1⋯Cg1i 0.93 2.94 3.867 (4) 173
C13—H13⋯Cg2ii 0.93 2.76 3.503 (3) 138
Symmetry codes: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pincer compounds represent a group of species with very particular and interesting properties among which their high thermal stability and unusual reactivities that confer to the metal complexes they form stand out. It is due, to the characteristics of robustness and thermal stability that pincer compounds have attracted the continuos attention of the chemistry community for multiple applications (Morales-Morales et al., 2004, Morales-Morales et al. 2007, Albrecht et al., 2009, Morales-Morales, 2008, Morales-Morales, 2009). In the beginning, the very simple backbone exhibited by these compounds did not anticipate the wide variety of possible functionalization in the main frame of the complex.

Among these species, those including sulfur as donor atom have been scarcely studied (Arroyo et al., 2003), mostly due to the well known tendency of sulfur to kill the activity of homogeneous catalysts. Thus, following our continuous interest in the synthesis of pincer type ligands we report the crystal structure of the potentially pincer sulfur based ligand 1,3-bis((naphthalen-2-ylthio)methyl)benzene.

In the asymmetric unit only half of the molecule of the compound 1,3-bis(naphthalen-2-ylthio)methyl)benzene is found. The other half is generated by a mirror plane. The molecular structure of the title compound is shown in Figure 1. The phenyl and the naphthyl enclose a dihedral angle of 83.14 (7)°. The two naphthyl planes have a dihedral angle of 45.64 (4)°. The sulfur atoms form weak hydrogen bonds (C5—H5···S1). Two C—H···π interactions [C1—H1···Cg1 and C13—H13···Cg2] further connect the molecules into ribbons running along the a-axis

Related literature top

For information on pincer compounds, see: Albrecht & Morales-Morales (2009); Arroyo et al. (2003); Morales-Morales (2004, 2008, 2009); Morales-Morales & Jensen (2007).

Experimental top

To a solution of 2-naphthalenethiol (0.320 g, 2.0 mmol), 0.057 g (2.5 mmol) of NaH in toluene (100 ml) were added. The reaction mixture was stirred at room temperature for 3 h. After this time, 0.264 g (1 mmol) of 1,3-bis(bromomethyl)benzene were added to yield a colourless solution that was further stirred for 5 h. Then, the solvent was evaporated under vacumm affording 1,3-bis[(naphthalen-2-ylsulfanyl)methyl]benzene (0.24 g) as a microcrystalline white powder (93% based on 1,3-Bis(bromomethyl)benzene). mp: 120–122 °C, MS—EI (m/z): 422 (100%) [M]+, 1H-NMR (300 MHz, CDCl3) δ (p.p.m.): 4.05 (s, 4H), 7.06–7.12 (d, 3H), 7.22 (s, 1H), 7.24 (d, 1H), 7.27 (d, 1H), 7.29–7.39 (m, 4H), 7.54–7.70 (m, 2H). 13 C-NMR (757 MHz, CDCl3) δ (p.p.m.): 38.82, 125.79, 126.50, 127.22, 127.72, 127.81, 127.85, 128.36, 128.75, 129.45, 133.72, 133.76, 137.73.

Refinement top

H atoms were included in calculated positions (C—H = 0.93 Å for aromatic H, C—H = 0.97 Å for methylene H), and refined using a riding model, with Uiso(H) = 1.2Ueq of the carrier atom.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids at the 40% probability.
[Figure 2] Fig. 2. The title compound is linked by C—H···S and C—H···π intermolecular interactions along the a axes, the hydrogen atoms for the interactions are drawn.
1,3-Bis[(naphthalen-2-ylsulfanyl)methyl]benzene top
Crystal data top
C28H22S2F(000) = 888
Mr = 422.58Dx = 1.300 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 2418 reflections
a = 8.651 (2) Åθ = 3.0–25.1°
b = 41.235 (10) ŵ = 0.26 mm1
c = 6.0517 (14) ÅT = 298 K
V = 2158.9 (9) Å3Plates, colorless
Z = 40.48 × 0.42 × 0.07 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1994 independent reflections
Radiation source: fine-focus sealed tube1345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
Detector resolution: 0.661 pixels mm-1θmax = 25.4°, θmin = 3.0°
ω–scansh = 109
Absorption correction: analytical
(SADABS; Bruker; 2007)
k = 4348
Tmin = 0.893, Tmax = 0.979l = 77
7907 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters not refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
1994 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C28H22S2V = 2158.9 (9) Å3
Mr = 422.58Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 8.651 (2) ŵ = 0.26 mm1
b = 41.235 (10) ÅT = 298 K
c = 6.0517 (14) Å0.48 × 0.42 × 0.07 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1994 independent reflections
Absorption correction: analytical
(SADABS; Bruker; 2007)
1345 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.979Rint = 0.065
7907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.124H-atom parameters not refined
S = 1.02Δρmax = 0.21 e Å3
1994 reflectionsΔρmin = 0.16 e Å3
139 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49764 (9)0.180146 (17)0.07221 (12)0.0516 (3)
C10.5547 (5)0.25000.3529 (6)0.0456 (10)
H10.63930.25000.25810.055*
C20.4932 (3)0.22086 (6)0.4217 (4)0.0432 (7)
C30.3680 (4)0.22111 (7)0.5638 (4)0.0489 (8)
H30.32540.20170.61230.059*
C40.3065 (5)0.25000.6332 (6)0.0533 (11)
H40.22210.25000.72850.064*
C50.5635 (4)0.18939 (6)0.3482 (5)0.0561 (8)
H5A0.53350.17220.44840.067*
H5B0.67540.19110.34980.067*
C60.6690 (3)0.12415 (6)0.1558 (4)0.0419 (7)
H60.70480.13370.28530.050*
C70.5702 (3)0.14102 (6)0.0228 (4)0.0417 (7)
C80.5192 (3)0.12636 (7)0.1764 (4)0.0476 (7)
H80.45130.13760.26770.057*
C90.5670 (4)0.09654 (7)0.2359 (4)0.0491 (8)
H90.53310.08770.36880.059*
C100.7184 (4)0.04703 (7)0.1541 (5)0.0560 (8)
H100.68650.03770.28630.067*
C110.8133 (4)0.03010 (7)0.0168 (5)0.0603 (9)
H110.84530.00930.05530.072*
C120.8624 (4)0.04379 (7)0.1811 (5)0.0558 (8)
H120.92700.03210.27440.067*
C130.8166 (3)0.07420 (6)0.2392 (5)0.0474 (7)
H130.85050.08300.37200.057*
C140.7181 (3)0.09256 (6)0.1010 (4)0.0392 (6)
C150.6678 (3)0.07843 (6)0.0998 (4)0.0426 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0523 (5)0.0423 (4)0.0602 (5)0.0052 (4)0.0078 (4)0.0030 (4)
C10.039 (2)0.052 (3)0.045 (2)0.0000.0039 (18)0.000
C20.0429 (16)0.0472 (16)0.0393 (14)0.0059 (15)0.0087 (14)0.0035 (12)
C30.0513 (19)0.0522 (18)0.0431 (16)0.0068 (16)0.0077 (14)0.0116 (14)
C40.046 (3)0.074 (3)0.040 (2)0.0000.0090 (19)0.000
C50.066 (2)0.0448 (16)0.0580 (17)0.0110 (16)0.0093 (16)0.0050 (15)
C60.0420 (17)0.0402 (15)0.0435 (14)0.0036 (13)0.0045 (13)0.0030 (13)
C70.0382 (16)0.0395 (15)0.0473 (16)0.0037 (13)0.0010 (13)0.0034 (13)
C80.0489 (19)0.0495 (17)0.0445 (16)0.0017 (15)0.0083 (14)0.0061 (14)
C90.058 (2)0.0524 (18)0.0372 (15)0.0095 (15)0.0059 (14)0.0013 (14)
C100.066 (2)0.0489 (18)0.0533 (18)0.0071 (16)0.0021 (16)0.0089 (16)
C110.075 (2)0.0375 (16)0.068 (2)0.0045 (16)0.0041 (18)0.0011 (16)
C120.063 (2)0.0460 (17)0.0586 (19)0.0035 (16)0.0019 (17)0.0070 (15)
C130.0508 (18)0.0431 (16)0.0483 (16)0.0008 (14)0.0011 (14)0.0020 (14)
C140.0413 (16)0.0360 (14)0.0404 (15)0.0049 (13)0.0017 (12)0.0015 (12)
C150.0492 (18)0.0385 (15)0.0400 (15)0.0085 (14)0.0037 (13)0.0004 (12)
Geometric parameters (Å, º) top
S1—C71.757 (3)C7—C81.419 (4)
S1—C51.805 (3)C8—C91.346 (4)
C1—C21.378 (3)C8—H80.9300
C1—C2i1.378 (3)C9—C151.414 (4)
C1—H10.9300C9—H90.9300
C2—C31.384 (4)C10—C111.361 (4)
C2—C51.501 (4)C10—C151.406 (4)
C3—C41.371 (3)C10—H100.9300
C3—H30.9300C11—C121.390 (4)
C4—C3i1.371 (3)C11—H110.9300
C4—H40.9300C12—C131.361 (4)
C5—H5A0.9700C12—H120.9300
C5—H5B0.9700C13—C141.414 (4)
C6—C71.365 (4)C13—H130.9300
C6—C141.410 (3)C14—C151.416 (3)
C6—H60.9300
C7—S1—C5103.79 (13)C9—C8—C7121.4 (3)
C2—C1—C2i121.4 (4)C9—C8—H8119.3
C2—C1—H1119.3C7—C8—H8119.3
C2i—C1—H1119.3C8—C9—C15121.1 (3)
C1—C2—C3118.9 (3)C8—C9—H9119.5
C1—C2—C5120.5 (3)C15—C9—H9119.5
C3—C2—C5120.5 (3)C11—C10—C15121.2 (3)
C4—C3—C2120.1 (3)C11—C10—H10119.4
C4—C3—H3120.0C15—C10—H10119.4
C2—C3—H3120.0C10—C11—C12120.1 (3)
C3i—C4—C3120.7 (4)C10—C11—H11119.9
C3i—C4—H4119.6C12—C11—H11119.9
C3—C4—H4119.6C13—C12—C11120.5 (3)
C2—C5—S1109.20 (19)C13—C12—H12119.7
C2—C5—H5A109.8C11—C12—H12119.7
S1—C5—H5A109.8C12—C13—C14121.0 (3)
C2—C5—H5B109.8C12—C13—H13119.5
S1—C5—H5B109.8C14—C13—H13119.5
H5A—C5—H5B108.3C6—C14—C13122.5 (2)
C7—C6—C14121.4 (2)C6—C14—C15119.3 (2)
C7—C6—H6119.3C13—C14—C15118.2 (2)
C14—C6—H6119.3C10—C15—C9122.9 (3)
C6—C7—C8118.6 (2)C10—C15—C14118.9 (3)
C6—C7—S1126.3 (2)C9—C15—C14118.2 (2)
C8—C7—S1115.1 (2)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C4/C2'/C3' and C6–C9/C14/C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5B···S1ii0.972.863.806 (4)164
C1—H1···Cg1ii0.932.943.867 (4)173
C13—H13···Cg2iii0.932.763.503 (3)138
Symmetry codes: (ii) x+1/2, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC28H22S2
Mr422.58
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)8.651 (2), 41.235 (10), 6.0517 (14)
V3)2158.9 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.48 × 0.42 × 0.07
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionAnalytical
(SADABS; Bruker; 2007)
Tmin, Tmax0.893, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
7907, 1994, 1345
Rint0.065
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.124, 1.02
No. of reflections1994
No. of parameters139
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C4/C2'/C3' and C6–C9/C14/C15 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5B···S1i0.972.863.806 (4)164
C1—H1···Cg1i0.932.943.867 (4)173
C13—H13···Cg2ii0.932.763.503 (3)138
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

RRM thanks CONACYT for a posdoctoral scholarship (agreement No. 290586-UNAM). Support of this research was provided by CONACYT (grant No. 154732) and PAPIIT (grant No. IN201711). DMM would like acknowledge Dr Ruben A. Toscano for technical assistance.

References

First citationAlbrecht, M. & Morales-Morales, D. (2009). Iridium Complexes in Organic Synthesis, pp. 299–323. Germany: Wiley-VCH.  Google Scholar
First citationArroyo, M., Cervantes, R., Gómez-Benitez, V., López, P., Morales-Morales, D., Torrens, H. & Toscano, R. A. (2003). Synthesis, pp. 1565–1568.  Web of Science CSD CrossRef Google Scholar
First citationBruker (2007). SAINT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMorales-Morales, D. (2004). Rev. Soc. Quim. Mex. 48, 338–346.  CAS Google Scholar
First citationMorales-Morales, D. (2008). Modern Carbonylation Methods, pp. 20–64. Germany: Wiley–VCH.  Google Scholar
First citationMorales-Morales, D. (2009). Iridium Complexes in Organic Synthesis, pp. 325–344. Germany: Wiley-VCH.  Google Scholar
First citationMorales-Morales, D. & Jensen, C. M. (2007). Editors. The Chemistry of Pincer Compounds. Amsterdam: Elsevier.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1429
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds