organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1496

Methyl (2E)-2-{[(2-methyl­quinolin-8-yl)­­oxy]meth­yl}-3-(thio­phen-2-yl)acrylate

aPostgraduate and Research Department of Chemistry, Presidency College, Chennai 600 005, India, and bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 24 March 2012; accepted 3 April 2012; online 21 April 2012)

In the mol­ecule of the title compound, C19H17NO3S, the dihedral angle formed by the quinoline ring system and the thio­phene ring is 83.15 (8)°. In the crystal, C—H⋯O hydrogen bonds link the mol­ecules into a C(8) chain running along the b axis. The packing of the mol­ecules is further influenced by C—H⋯π inter­actions.

Related literature

For the biological activity of thienyl acrylate and thio­phene derivatives, see: Anand et al. (2011[Anand, S., Maneesh, P. S., Thirunavukkarasu, B., Sampath Kumar, U. & Narayanan, S. (2011). Int. J. Pharma Sci. Res. 2, 27-35.]); Ferreira et al. (2006[Ferreira, I. C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384-1387.]); Bonini et al. (2005[Bonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Brault, L., Migianu, E., Neguesque, A., Battagalia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757-763.]). For general background to quinoline derivatives, see: Mali et al. (2010[Mali, J. R., Bhosle, M. R., Mahalle, S. R. & Mane, R. A. (2010). Bull. Korean Chem. Soc. 31, 1859-1863.]). For a related structure, see: Prasath et al. (2011[Prasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2283-o2284.]).

[Scheme 1]

Experimental

Crystal data
  • C19H17NO3S

  • Mr = 339.40

  • Orthorhombic, P b c n

  • a = 24.545 (8) Å

  • b = 8.689 (3) Å

  • c = 15.809 (5) Å

  • V = 3371.5 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.2 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.959

  • 17529 measured reflections

  • 4152 independent reflections

  • 2805 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.122

  • S = 1.03

  • 4152 reflections

  • 219 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 is the centroid of the C1/C2/C7–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19BCg3i 0.96 2.89 3.505 (2) 123
C17—H17⋯O3ii 0.93 2.48 3.056 (2) 120
Symmetry codes: (i) x, y+1, z; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound similar to the derivatives reported is found to exhibit remarkable antibacterial activity (Anand et al., 2011). Thiophene containing compounds are well known to exhibit various biological activities such as antioxidant activity (Ferreira et al., 2006), anti-inflammatory agents and anti-HIV PR inhibitors (Bonini et al., 2005). Quinolines have gained importance in medicinal and natural product chemistry due to their interesting biological and pharmacological activities. They possess anti-malarial, anti-tuberculosis, anti-inflammatory and anti-cancer properties (Mali et al., 2010). In order to get detailed information such as the geometrical features and the underlying interaction of the crystal structure, an X-ray study of the title compound was carried out.

In the title compound (Fig. 1), the quinoline ring system is essentially planar with a maximum deviation of 0.007 (2) Å at atom C5. This mean plane of the quinoline ring forms a dihedral angle of 83.15 (8)° with the thiophene ring. The methyl acrylate group assumes an extended conformation as can be seen from torsion angles C12—C18—O2—C19 [-179.2 (1)°] and C13—C12—C18—O2 [-169.6 (1)°].

The atom C15 in the molecule (x,y,z) donates one proton to atom O4 of the molecule at (x,-1 + y,z) forming a C(8) chain running along the b axis (Fig. 2). The packing of the molecules is further influenced by C—H···π interactions.

Related literature top

For the biological activity of thienyl acrylate and thiophene derivatives, see: Anand et al. (2011); Ferreira et al. (2006); Bonini et al. (2005). For general background to quinoline derivatives, see: Mali et al. (2010). For a related structure, see: Prasath et al. (2011).

Experimental top

Methyl (2Z)-2-(bromo methyl)-3-(2-thienyl) acrylate (0.006 mole) was treated with 2-methyl-8-hydroxy quinoline (0.006 mole) in the presence of potassium carbonate (0.006 mole) in dry dimethylformamide 10 ml for 1hr at room temperature. Water was added to the reaction mixture and stirred for 30 min. Thus the obtained crude thienyl acrylate was separated by filtration and washed with methanol. Recrystalization of the compound from ethanol gave X-ray diffraction quality crystals of methyl (2E)-2-{[(2-methylquinolin-8-yl) oxy] methyl}-3-(2-thienyl) acrylate.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A perspective view of the molecule showing the thermal ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. C—H···O interactions (dotted lines) in the crystal structure of the title compound. The crystal packing of the molecules is viewed down the c axis.
Methyl (2E)-2-{[(2-methylquinolin-8-yl)oxy]methyl}-3-(thiophen-2-yl)acrylate top
Crystal data top
C19H17NO3SF(000) = 1424
Mr = 339.40Dx = 1.337 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2025 reflections
a = 24.545 (8) Åθ = 1.7–28.3°
b = 8.689 (3) ŵ = 0.21 mm1
c = 15.809 (5) ÅT = 293 K
V = 3371.5 (19) Å3Block, colourless
Z = 80.25 × 0.23 × 0.2 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4152 independent reflections
Radiation source: fine-focus sealed tube2805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3232
Tmin = 0.949, Tmax = 0.959k = 119
17529 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.3929P]
where P = (Fo2 + 2Fc2)/3
4152 reflections(Δ/σ)max < 0.001
219 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C19H17NO3SV = 3371.5 (19) Å3
Mr = 339.40Z = 8
Orthorhombic, PbcnMo Kα radiation
a = 24.545 (8) ŵ = 0.21 mm1
b = 8.689 (3) ÅT = 293 K
c = 15.809 (5) Å0.25 × 0.23 × 0.2 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
4152 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2805 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.959Rint = 0.032
17529 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
4152 reflectionsΔρmin = 0.21 e Å3
219 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66864 (5)0.24488 (16)0.06658 (11)0.0385 (4)
C20.71433 (6)0.15068 (18)0.08567 (13)0.0498 (5)
C30.74634 (7)0.1053 (2)0.01550 (16)0.0656 (6)
H30.77700.04430.02400.079*
C40.73280 (7)0.1497 (2)0.06405 (16)0.0643 (6)
H40.75410.11930.10980.077*
C50.68630 (6)0.2421 (2)0.07710 (12)0.0516 (4)
C60.66978 (9)0.2936 (3)0.16408 (14)0.0752 (6)
H6A0.63150.27620.17170.113*
H6B0.68980.23620.20560.113*
H6C0.67750.40130.17050.113*
C70.72541 (7)0.1091 (2)0.17010 (15)0.0628 (5)
H70.75540.04750.18240.075*
C80.69243 (7)0.1587 (2)0.23369 (14)0.0579 (5)
H80.70010.13030.28910.070*
C90.64683 (6)0.25249 (19)0.21687 (11)0.0471 (4)
H90.62480.28580.26110.056*
C100.63489 (6)0.29474 (17)0.13523 (11)0.0378 (4)
C110.55580 (6)0.43432 (17)0.17728 (10)0.0385 (3)
H11A0.57610.48780.22100.046*
H11B0.53780.34640.20270.046*
C120.51445 (6)0.54034 (17)0.13842 (10)0.0383 (3)
C130.46895 (6)0.49681 (18)0.09823 (10)0.0396 (4)
H130.44840.57810.07710.048*
C140.44592 (6)0.34661 (17)0.08167 (11)0.0415 (4)
C150.39555 (7)0.32582 (19)0.04619 (13)0.0517 (4)
H150.37330.40660.02900.062*
C160.38082 (8)0.1701 (2)0.03840 (15)0.0622 (5)
H160.34770.13720.01620.075*
C170.41989 (7)0.0735 (2)0.06666 (13)0.0604 (5)
H170.41690.03320.06600.072*
C180.52379 (6)0.70908 (19)0.14450 (12)0.0453 (4)
C190.58520 (9)0.9061 (2)0.18099 (16)0.0772 (7)
H19A0.57520.95860.12990.116*
H19B0.62340.91990.19140.116*
H19C0.56480.94750.22750.116*
N10.65531 (5)0.28865 (15)0.01364 (9)0.0434 (3)
O10.59204 (4)0.38425 (13)0.11118 (7)0.0437 (3)
O20.57341 (5)0.74353 (13)0.17233 (9)0.0614 (4)
O30.49055 (6)0.80581 (14)0.12741 (11)0.0718 (5)
S10.475215 (18)0.16968 (5)0.10362 (3)0.05398 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0292 (6)0.0331 (7)0.0532 (10)0.0013 (5)0.0009 (6)0.0032 (7)
C20.0326 (7)0.0414 (8)0.0753 (14)0.0045 (6)0.0021 (8)0.0043 (9)
C30.0393 (9)0.0571 (11)0.1005 (18)0.0135 (8)0.0081 (10)0.0103 (12)
C40.0466 (10)0.0657 (12)0.0806 (16)0.0037 (8)0.0205 (10)0.0188 (12)
C50.0426 (8)0.0529 (10)0.0594 (12)0.0063 (7)0.0110 (8)0.0130 (9)
C60.0673 (13)0.1046 (17)0.0536 (13)0.0006 (12)0.0134 (10)0.0128 (13)
C70.0435 (9)0.0585 (10)0.0864 (16)0.0137 (8)0.0141 (10)0.0079 (11)
C80.0513 (10)0.0604 (11)0.0621 (13)0.0059 (8)0.0169 (9)0.0089 (10)
C90.0440 (8)0.0479 (9)0.0493 (11)0.0032 (7)0.0048 (7)0.0027 (9)
C100.0319 (7)0.0341 (7)0.0475 (10)0.0012 (5)0.0021 (6)0.0019 (7)
C110.0370 (7)0.0404 (8)0.0380 (9)0.0048 (6)0.0042 (6)0.0013 (7)
C120.0371 (8)0.0386 (7)0.0392 (9)0.0065 (6)0.0076 (6)0.0014 (7)
C130.0375 (7)0.0377 (7)0.0437 (10)0.0074 (6)0.0064 (7)0.0049 (7)
C140.0401 (8)0.0394 (8)0.0448 (10)0.0059 (6)0.0013 (7)0.0045 (7)
C150.0451 (9)0.0466 (9)0.0634 (13)0.0031 (7)0.0078 (8)0.0060 (9)
C160.0514 (10)0.0573 (11)0.0778 (15)0.0074 (8)0.0133 (10)0.0012 (10)
C170.0643 (11)0.0429 (9)0.0740 (14)0.0046 (8)0.0061 (10)0.0021 (10)
C180.0462 (9)0.0416 (8)0.0479 (11)0.0053 (7)0.0016 (7)0.0007 (8)
C190.0833 (15)0.0476 (11)0.1007 (19)0.0120 (9)0.0250 (13)0.0013 (12)
N10.0353 (6)0.0454 (7)0.0496 (9)0.0011 (5)0.0047 (6)0.0049 (7)
O10.0397 (6)0.0511 (6)0.0403 (7)0.0156 (5)0.0053 (4)0.0047 (5)
O20.0562 (7)0.0449 (7)0.0830 (10)0.0036 (5)0.0169 (6)0.0003 (7)
O30.0635 (8)0.0401 (6)0.1119 (14)0.0101 (6)0.0197 (8)0.0007 (7)
S10.0524 (3)0.0389 (2)0.0707 (4)0.00640 (17)0.0103 (2)0.0031 (2)
Geometric parameters (Å, º) top
C1—N11.364 (2)C11—C121.502 (2)
C1—C21.421 (2)C11—H11A0.9700
C1—C101.432 (2)C11—H11B0.9700
C2—C71.409 (3)C12—C131.339 (2)
C2—C31.416 (3)C12—C181.487 (2)
C3—C41.357 (3)C13—C141.446 (2)
C3—H30.9300C13—H130.9300
C4—C51.411 (3)C14—C151.370 (2)
C4—H40.9300C14—S11.7323 (16)
C5—N11.322 (2)C15—C161.406 (2)
C5—C61.502 (3)C15—H150.9300
C6—H6A0.9600C16—C171.351 (3)
C6—H6B0.9600C16—H160.9300
C6—H6C0.9600C17—S11.6983 (19)
C7—C81.361 (3)C17—H170.9300
C7—H70.9300C18—O31.2021 (19)
C8—C91.410 (2)C18—O21.3292 (19)
C8—H80.9300C19—O21.448 (2)
C9—C101.373 (2)C19—H19A0.9600
C9—H90.9300C19—H19B0.9600
C10—O11.3622 (17)C19—H19C0.9600
C11—O11.4396 (17)
N1—C1—C2123.20 (15)C12—C11—H11A110.1
N1—C1—C10118.78 (13)O1—C11—H11B110.1
C2—C1—C10118.01 (16)C12—C11—H11B110.1
C7—C2—C3124.31 (17)H11A—C11—H11B108.5
C7—C2—C1120.08 (17)C13—C12—C18115.95 (14)
C3—C2—C1115.61 (18)C13—C12—C11125.75 (14)
C4—C3—C2120.75 (17)C18—C12—C11118.30 (13)
C4—C3—H3119.6C12—C13—C14131.81 (14)
C2—C3—H3119.6C12—C13—H13114.1
C3—C4—C5119.70 (18)C14—C13—H13114.1
C3—C4—H4120.1C15—C14—C13123.10 (14)
C5—C4—H4120.1C15—C14—S1109.86 (12)
N1—C5—C4121.90 (19)C13—C14—S1127.04 (12)
N1—C5—C6116.64 (17)C14—C15—C16113.27 (15)
C4—C5—C6121.46 (18)C14—C15—H15123.4
C5—C6—H6A109.5C16—C15—H15123.4
C5—C6—H6B109.5C17—C16—C15112.75 (16)
H6A—C6—H6B109.5C17—C16—H16123.6
C5—C6—H6C109.5C15—C16—H16123.6
H6A—C6—H6C109.5C16—C17—S1112.05 (14)
H6B—C6—H6C109.5C16—C17—H17124.0
C8—C7—C2120.25 (16)S1—C17—H17124.0
C8—C7—H7119.9O3—C18—O2122.61 (16)
C2—C7—H7119.9O3—C18—C12124.76 (15)
C7—C8—C9121.07 (18)O2—C18—C12112.62 (13)
C7—C8—H8119.5O2—C19—H19A109.5
C9—C8—H8119.5O2—C19—H19B109.5
C10—C9—C8120.07 (17)H19A—C19—H19B109.5
C10—C9—H9120.0O2—C19—H19C109.5
C8—C9—H9120.0H19A—C19—H19C109.5
O1—C10—C9125.42 (14)H19B—C19—H19C109.5
O1—C10—C1114.06 (14)C5—N1—C1118.84 (14)
C9—C10—C1120.52 (14)C10—O1—C11116.56 (12)
O1—C11—C12107.82 (12)C18—O2—C19115.72 (14)
O1—C11—H11A110.1C17—S1—C1492.07 (8)
N1—C1—C2—C7179.55 (15)C12—C13—C14—C15173.31 (18)
C10—C1—C2—C70.1 (2)C12—C13—C14—S15.6 (3)
N1—C1—C2—C30.7 (2)C13—C14—C15—C16178.11 (17)
C10—C1—C2—C3179.79 (14)S1—C14—C15—C161.0 (2)
C7—C2—C3—C4179.71 (18)C14—C15—C16—C170.8 (3)
C1—C2—C3—C40.6 (3)C15—C16—C17—S10.2 (3)
C2—C3—C4—C50.0 (3)C13—C12—C18—O311.2 (3)
C3—C4—C5—N10.6 (3)C11—C12—C18—O3168.58 (18)
C3—C4—C5—C6179.88 (19)C13—C12—C18—O2169.61 (15)
C3—C2—C7—C8179.74 (17)C11—C12—C18—O210.6 (2)
C1—C2—C7—C80.1 (3)C4—C5—N1—C10.4 (2)
C2—C7—C8—C90.2 (3)C6—C5—N1—C1179.99 (15)
C7—C8—C9—C100.3 (3)C2—C1—N1—C50.2 (2)
C8—C9—C10—O1179.81 (15)C10—C1—N1—C5179.71 (13)
C8—C9—C10—C10.3 (2)C9—C10—O1—C111.8 (2)
N1—C1—C10—O10.41 (19)C1—C10—O1—C11178.33 (12)
C2—C1—C10—O1179.90 (13)C12—C11—O1—C10175.71 (12)
N1—C1—C10—C9179.70 (14)O3—C18—O2—C190.0 (3)
C2—C1—C10—C90.2 (2)C12—C18—O2—C19179.19 (17)
O1—C11—C12—C1383.08 (19)C16—C17—S1—C140.28 (18)
O1—C11—C12—C1897.16 (16)C15—C14—S1—C170.72 (15)
C18—C12—C13—C14178.52 (16)C13—C14—S1—C17178.33 (16)
C11—C12—C13—C141.2 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1/C2/C7–C10 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19B···Cg3i0.962.893.505 (2)123
C17—H17···O3ii0.932.483.056 (2)120
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC19H17NO3S
Mr339.40
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)293
a, b, c (Å)24.545 (8), 8.689 (3), 15.809 (5)
V3)3371.5 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.23 × 0.2
Data collection
DiffractometerBruker SMART APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.949, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
17529, 4152, 2805
Rint0.032
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.122, 1.03
No. of reflections4152
No. of parameters219
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 is the centroid of the C1/C2/C7–C10 ring.
D—H···AD—HH···AD···AD—H···A
C19—H19B···Cg3i0.962.893.505 (2)123
C17—H17···O3ii0.932.483.056 (2)120
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Acknowledgements

SS and DV thank the TBI X-ray Facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and the University Grants Commission (UGC & SAP) for financial support.

References

First citationAnand, S., Maneesh, P. S., Thirunavukkarasu, B., Sampath Kumar, U. & Narayanan, S. (2011). Int. J. Pharma Sci. Res. 2, 27–35.  Google Scholar
First citationBonini, C., Chiummiento, L., Bonis, M. D., Funicello, M., Lupattelli, P., Suanno, G., Brault, L., Migianu, E., Neguesque, A., Battagalia, E., Bagrel, D. & Kirsch, G. (2005). Eur. J. Med. Chem. 40, 757–763.  Web of Science PubMed Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerreira, I. C. F. R., Queiroz, M. R. P., Vilas-Boas, M., Estevinho, L. M., Begouin, A. & Kirsch, G. (2006). Bioorg. Med. Chem. Lett. 16, 1384–1387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMali, J. R., Bhosle, M. R., Mahalle, S. R. & Mane, R. A. (2010). Bull. Korean Chem. Soc. 31, 1859–1863.  CrossRef CAS Google Scholar
First citationPrasath, R., Bhavana, P., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o2283–o2284.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1496
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds