organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1276

1-Octyl-1H-benzimidazol-2(3H)-one

aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'immouzzer, BP 2202 Fès, Morocco, bLaboratoire de Chimie Organique Hétérocyclique URAC21, Faculté des Sciences, Université Mohammed V-Agdal, Av. Ibn Battouta, BP 1014, Rabat, Morocco, cInstitute of Nanmaterials and Nanotechnology, MASCIR, Rabat, Morocco, and dLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: d_belaziz@yahoo.fr

(Received 26 March 2012; accepted 27 March 2012; online 4 April 2012)

In the title compound, C15H22N2O, the octyl group adopts an all-trans conformation. In the crystal, mol­ecules form centrosymmetric dimers with an R22(8) graph-set motif, linked by pairs of N—H⋯O hydrogen bonds. In addition, C—H⋯O contacts are observed.

Related literature

For background to benzimidazol-2-one, see: Soderlind et al. (1999[Soderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anti-Cancer Drug Des. 14, 19-36.]). For similar structures, see: Ouzidan et al. (2011[Ouzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283.]); Kandri Rodi et al. (2011[Kandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o3340-o3341.]).

[Scheme 1]

Experimental

Crystal data
  • C15H22N2O

  • Mr = 246.35

  • Monoclinic, P 21 /c

  • a = 14.8888 (18) Å

  • b = 5.8395 (6) Å

  • c = 16.6778 (19) Å

  • β = 91.448 (3)°

  • V = 1449.6 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.54 × 0.43 × 0.12 mm

Data collection
  • Bruker X8 APEX diffractometer

  • 8760 measured reflections

  • 3020 independent reflections

  • 1971 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.143

  • S = 1.03

  • 3020 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.01 2.8257 (19) 159
C4—H4⋯O1ii 0.93 2.52 3.312 (2) 144
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Benzimidazol-2-one derivatives are useful heterocyclic building blocks and are prominent structural elements of compounds demonstrating a wide variety of pharmacological and biochemical properties (Soderlind et al., 1999).

In this work, we have been able to react 1H-benzimidazol-2(3H)-one with 1-bromooctane in the presence of a catalytic quantity of tetra-n-butylammonium bromide under mild conditions to furnish the title compound (Scheme I).

The 1-octyl-1H-benzimidazol-2(3H)-one molecule structure is built up from fused six-and five-membered rings linked to C8H17 chain as shown in Fig.1. The fused-ring system is essentially planar, with a maximum deviation of 0.0045 (17) Å and 0.0080 (13) Å for C7 and N2 respectively. The dihedral angle between them does not exceed 1.20 (9)°. The octyl group is nearly perpendicular to the benzimidazole plane as indicated by the torsion angle of C1 N2 C8 C9 = -105.19(0.19)°. The structure of the title compound is similar to 1-nonyl-1H-benzimidazol-2(3H)-one (Ouzidan et al., 2011) and 5-chloro-1-nonyl-1H-benzimidazol-2(3H)-one (Kandri Rodi et al., 2011).

In the crystal, the molecules form centrosymmetric dimers linked by N—H···O hydrogen bonds with R22(8) graph set motif.

Related literature top

For background to benzimidazol-2-one, see: Soderlind et al. (1999). For similar structures, see: Ouzidan et al. (2011); Kandri Rodi et al. (2011).

Experimental top

To 1H-benzimidazol-2(3H)-one (0,2 g, 1,5 mmol), potassium carbonate (0.41 g, 3 mmol), and tetra-n-butylammonium bromide (0.1 g, 0.3 mmol) in DMF (15 ml) was added 1-bromooctane (0.3 ml, 1.8 mmol). Stirring was continued at room temperature for 6 h. The salt was removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1/2) as eluent. Colorless crystals were isolated when the solvent was allowed to evaporate.

Refinement top

H atoms were located in a difference map and treated as riding with N—H = 0.86 Å, C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene) and C—H = 0.96 Å (methyl) with Uiso(H) = 1.2 Ueq (aromatic, methylene) and Uiso(H) = 1.5 Ueq(methyl).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles.
[Figure 2] Fig. 2. Molecule and its symmetry through the inversion center linked by hydrogen bonds and building dimers.
1-Octyl-1H-benzimidazol-2(3H)-one top
Crystal data top
C15H22N2OF(000) = 536
Mr = 246.35Dx = 1.129 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3020 reflections
a = 14.8888 (18) Åθ = 2.4–26.5°
b = 5.8395 (6) ŵ = 0.07 mm1
c = 16.6778 (19) ÅT = 296 K
β = 91.448 (3)°Needle, colourless
V = 1449.6 (3) Å30.54 × 0.43 × 0.12 mm
Z = 4
Data collection top
Bruker X8 APEX
diffractometer
1971 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 26.5°, θmin = 2.4°
ϕ and ω scansh = 1818
8760 measured reflectionsk = 57
3020 independent reflectionsl = 1920
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.143 w = 1/[σ2(Fo2) + (0.0608P)2 + 0.2949P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3020 reflectionsΔρmax = 0.18 e Å3
164 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.010 (2)
Crystal data top
C15H22N2OV = 1449.6 (3) Å3
Mr = 246.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.8888 (18) ŵ = 0.07 mm1
b = 5.8395 (6) ÅT = 296 K
c = 16.6778 (19) Å0.54 × 0.43 × 0.12 mm
β = 91.448 (3)°
Data collection top
Bruker X8 APEX
diffractometer
1971 reflections with I > 2σ(I)
8760 measured reflectionsRint = 0.030
3020 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
3020 reflectionsΔρmin = 0.14 e Å3
164 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.94346 (9)0.1963 (2)0.56368 (7)0.0642 (4)
N10.94058 (10)0.1858 (2)0.42412 (8)0.0547 (4)
H10.96900.05980.41660.066*
N20.87525 (9)0.4734 (2)0.48345 (8)0.0517 (4)
C20.90690 (11)0.3264 (3)0.36345 (10)0.0486 (4)
C10.92224 (11)0.2755 (3)0.49722 (10)0.0509 (4)
C70.86541 (11)0.5096 (3)0.40093 (10)0.0499 (4)
C30.90920 (12)0.3128 (3)0.28082 (10)0.0596 (5)
H30.93680.19080.25540.072*
C60.82615 (14)0.6843 (3)0.35775 (12)0.0660 (5)
H60.79910.80740.38300.079*
C90.74157 (14)0.6002 (4)0.55652 (12)0.0696 (6)
H9A0.72320.71330.59540.084*
H9B0.71170.63670.50580.084*
C40.86880 (14)0.4880 (4)0.23756 (11)0.0684 (6)
H40.86880.48320.18180.082*
C80.84181 (13)0.6198 (3)0.54643 (11)0.0613 (5)
H8A0.85650.77760.53430.074*
H8B0.87210.58020.59670.074*
C50.82845 (15)0.6697 (4)0.27511 (12)0.0721 (6)
H50.80220.78520.24410.087*
C100.71026 (13)0.3677 (4)0.58346 (13)0.0743 (6)
H10A0.73990.33060.63430.089*
H10B0.72820.25400.54460.089*
C110.60948 (14)0.3539 (4)0.59315 (15)0.0855 (7)
H11A0.59220.46260.63400.103*
H11B0.58000.39940.54310.103*
C120.57598 (15)0.1199 (4)0.61598 (16)0.0896 (7)
H12B0.60500.07580.66630.107*
H12A0.59440.01120.57560.107*
C130.47537 (15)0.1006 (5)0.62485 (16)0.0932 (8)
H13A0.45680.20770.66570.112*
H13B0.44600.14490.57460.112*
C140.44383 (18)0.1364 (6)0.64722 (19)0.1112 (9)
H14A0.46320.24300.60650.133*
H14B0.47340.17970.69740.133*
C150.3454 (2)0.1625 (6)0.6560 (2)0.1342 (12)
H15A0.33200.31830.66970.201*
H15B0.31520.12350.60640.201*
H15C0.32550.06270.69770.201*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0772 (8)0.0636 (8)0.0520 (8)0.0168 (6)0.0057 (6)0.0123 (6)
N10.0628 (9)0.0464 (8)0.0552 (9)0.0099 (7)0.0081 (7)0.0002 (7)
N20.0616 (9)0.0464 (8)0.0471 (8)0.0075 (7)0.0023 (6)0.0000 (6)
C20.0494 (9)0.0448 (9)0.0518 (9)0.0031 (7)0.0033 (7)0.0014 (8)
C10.0515 (9)0.0476 (10)0.0538 (10)0.0006 (8)0.0054 (7)0.0034 (8)
C70.0569 (10)0.0452 (9)0.0474 (9)0.0018 (8)0.0001 (7)0.0005 (7)
C30.0656 (11)0.0592 (11)0.0543 (11)0.0016 (9)0.0079 (8)0.0064 (9)
C60.0856 (14)0.0506 (11)0.0615 (12)0.0135 (10)0.0020 (9)0.0009 (9)
C90.0782 (13)0.0693 (13)0.0614 (12)0.0253 (11)0.0050 (9)0.0062 (10)
C40.0807 (13)0.0761 (14)0.0483 (10)0.0052 (11)0.0001 (9)0.0033 (10)
C80.0783 (13)0.0520 (11)0.0536 (10)0.0100 (9)0.0000 (9)0.0082 (9)
C50.0938 (15)0.0654 (13)0.0569 (12)0.0094 (11)0.0057 (10)0.0111 (10)
C100.0684 (13)0.0785 (14)0.0764 (14)0.0186 (11)0.0086 (10)0.0031 (11)
C110.0713 (14)0.0938 (17)0.0919 (16)0.0211 (12)0.0106 (11)0.0036 (14)
C120.0739 (14)0.0947 (18)0.1004 (18)0.0153 (13)0.0087 (12)0.0010 (15)
C130.0711 (14)0.107 (2)0.1020 (18)0.0144 (14)0.0064 (12)0.0025 (16)
C140.0817 (17)0.112 (2)0.140 (3)0.0135 (16)0.0050 (16)0.0126 (19)
C150.088 (2)0.141 (3)0.174 (3)0.0011 (19)0.0011 (19)0.013 (2)
Geometric parameters (Å, º) top
O1—C11.235 (2)C8—H8B0.9700
N1—C11.361 (2)C5—H50.9300
N1—C21.387 (2)C10—C111.515 (3)
N1—H10.8600C10—H10A0.9700
N2—C11.367 (2)C10—H10B0.9700
N2—C71.396 (2)C11—C121.507 (4)
N2—C81.452 (2)C11—H11A0.9700
C2—C31.382 (2)C11—H11B0.9700
C2—C71.391 (2)C12—C131.513 (3)
C7—C61.371 (2)C12—H12B0.9700
C3—C41.381 (3)C12—H12A0.9700
C3—H30.9300C13—C141.511 (4)
C6—C51.382 (3)C13—H13A0.9700
C6—H60.9300C13—H13B0.9700
C9—C101.507 (3)C14—C151.484 (4)
C9—C81.511 (3)C14—H14A0.9700
C9—H9A0.9700C14—H14B0.9700
C9—H9B0.9700C15—H15A0.9600
C4—C51.378 (3)C15—H15B0.9600
C4—H40.9300C15—H15C0.9600
C8—H8A0.9700
C1—N1—C2110.42 (14)C6—C5—H5119.2
C1—N1—H1124.8C9—C10—C11113.20 (18)
C2—N1—H1124.8C9—C10—H10A108.9
C1—N2—C7109.50 (14)C11—C10—H10A108.9
C1—N2—C8124.01 (14)C9—C10—H10B108.9
C7—N2—C8126.49 (14)C11—C10—H10B108.9
C3—C2—N1132.54 (16)H10A—C10—H10B107.8
C3—C2—C7120.98 (16)C12—C11—C10114.20 (18)
N1—C2—C7106.48 (14)C12—C11—H11A108.7
O1—C1—N1127.41 (16)C10—C11—H11A108.7
O1—C1—N2125.84 (16)C12—C11—H11B108.7
N1—C1—N2106.75 (14)C10—C11—H11B108.7
C6—C7—C2121.62 (16)H11A—C11—H11B107.6
C6—C7—N2131.52 (16)C11—C12—C13115.3 (2)
C2—C7—N2106.85 (14)C11—C12—H12B108.5
C4—C3—C2117.20 (17)C13—C12—H12B108.5
C4—C3—H3121.4C11—C12—H12A108.5
C2—C3—H3121.4C13—C12—H12A108.5
C7—C6—C5117.19 (18)H12B—C12—H12A107.5
C7—C6—H6121.4C14—C13—C12114.0 (2)
C5—C6—H6121.4C14—C13—H13A108.7
C10—C9—C8114.54 (16)C12—C13—H13A108.7
C10—C9—H9A108.6C14—C13—H13B108.7
C8—C9—H9A108.6C12—C13—H13B108.7
C10—C9—H9B108.6H13A—C13—H13B107.6
C8—C9—H9B108.6C15—C14—C13115.6 (2)
H9A—C9—H9B107.6C15—C14—H14A108.4
C5—C4—C3121.48 (18)C13—C14—H14A108.4
C5—C4—H4119.3C15—C14—H14B108.4
C3—C4—H4119.3C13—C14—H14B108.4
N2—C8—C9113.18 (15)H14A—C14—H14B107.4
N2—C8—H8A108.9C14—C15—H15A109.5
C9—C8—H8A108.9C14—C15—H15B109.5
N2—C8—H8B108.9H15A—C15—H15B109.5
C9—C8—H8B108.9C14—C15—H15C109.5
H8A—C8—H8B107.8H15A—C15—H15C109.5
C4—C5—C6121.53 (19)H15B—C15—H15C109.5
C4—C5—H5119.2
C1—N1—C2—C3178.89 (18)N1—C2—C3—C4179.26 (18)
C1—N1—C2—C70.48 (18)C7—C2—C3—C40.0 (3)
C2—N1—C1—O1178.99 (16)C2—C7—C6—C50.8 (3)
C2—N1—C1—N20.88 (18)N2—C7—C6—C5179.37 (18)
C7—N2—C1—O1178.93 (16)C2—C3—C4—C50.5 (3)
C8—N2—C1—O11.0 (3)C1—N2—C8—C9105.19 (19)
C7—N2—C1—N10.95 (18)C7—N2—C8—C974.9 (2)
C8—N2—C1—N1179.15 (15)C10—C9—C8—N264.2 (2)
C3—C2—C7—C60.7 (3)C3—C4—C5—C60.3 (3)
N1—C2—C7—C6178.77 (17)C7—C6—C5—C40.3 (3)
C3—C2—C7—N2179.57 (15)C8—C9—C10—C11179.88 (17)
N1—C2—C7—N20.11 (17)C9—C10—C11—C12177.1 (2)
C1—N2—C7—C6178.07 (19)C10—C11—C12—C13179.1 (2)
C8—N2—C7—C61.8 (3)C11—C12—C13—C14179.6 (2)
C1—N2—C7—C20.66 (18)C12—C13—C14—C15179.7 (3)
C8—N2—C7—C2179.44 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.012.8257 (19)159
C4—H4···O1ii0.932.523.312 (2)144
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC15H22N2O
Mr246.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)14.8888 (18), 5.8395 (6), 16.6778 (19)
β (°) 91.448 (3)
V3)1449.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.54 × 0.43 × 0.12
Data collection
DiffractometerBruker X8 APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8760, 3020, 1971
Rint0.030
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.143, 1.03
No. of reflections3020
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.14

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.012.8257 (19)159.2
C4—H4···O1ii0.932.523.312 (2)143.8
Symmetry codes: (i) x+2, y, z+1; (ii) x, y+1/2, z1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKandri Rodi, Y., Ouazzani Chahdi, F., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o3340–o3341.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuzidan, Y., Kandri Rodi, Y., Butcher, R. J., Essassi, E. M. & El Ammari, L. (2011). Acta Cryst. E67, o283.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoderlind, K. J., Gorodetsky, B., Singh, A. K., Bachur, N., Miller, G. G. & Lown, J. W. (1999). Anti-Cancer Drug Des. 14, 19–36.  Web of Science PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1276
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds