organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

10α-Hy­dr­oxy-13-{[4-(2-hy­dr­oxy­phen­yl)piperazin-1-yl]meth­yl}-4,9-di­methyl-3,8,15-trioxa­tetra­cyclo­[10.3.0.02,4.07,9]penta­decan-14-one

aLaboratoire de Chimie Bioorganique et Analytique, URAC 22, BP 146, FSTM, Université Hassan II, Mohammedia–Casablanca 20810 Mohammedia, Morocco, bLaboratoire de Chimie Biomoléculaire, Substances Naturelles et Réactivité, URAC 16, Faculté des Sciences Semlalia, BP 2390, Bd My Abdellah, 40000 Marrakech, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Avenue Ibn Battouta, BP 1014 Rabat, Morocco
*Correspondence e-mail: mberraho@yahoo.fr

(Received 28 March 2012; accepted 30 March 2012; online 6 April 2012)

The title compound, C25H34N2O6, was synthesized from 9α-hy­droxy­parthenolide (9α-hy­droxy-4,8-dimethyl-12-methyl­ene-3,14-dioxatricyclo­[9.3.0.02,4]tetra­dec-7-en-13-one), which was isolated from the chloro­form extract of the aerial parts of Anvillea radiata. The ten-membered ring adopts an approximate chair–chair conformation, while the piperazine ring displays a near regular chair conformation and the five-membered ring an envelope conformation with the C atom closest to the hy­droxy group forming the flap. The mol­ecular conformation is stabilized by an O—H⋯N hydrogen bond, which generates an S(7) loop, and the crystal structure features weak C—H⋯O inter­actions.

Related literature

For background to the medicinal uses of the plant Anvillea adiata, see: Abdel Sattar et al. (1996[Abdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403-405.]); El Hassany et al. (2004[El Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573-576.]); Qureshi et al.(1990[Qureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157-162.]). For the reactivity of this sesquiterpene, see: Hwang et al. (2006[Hwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83—91.]); Neukirch et al. (2003[Neukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503-1510.]); Neelakantan et al. (2009[Neelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346-4349.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the synthesis, see: Moumou et al. (2010[Moumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395.]).

[Scheme 1]

Experimental

Crystal data
  • C25H34N2O6

  • Mr = 458.54

  • Orthorhombic, P 21 21 21

  • a = 8.0978 (2) Å

  • b = 10.3660 (3) Å

  • c = 28.8194 (8) Å

  • V = 2419.15 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 180 K

  • 0.27 × 0.21 × 0.06 mm

Data collection
  • Agilent Xcalibur Sapphire1 long-nozzle diffractometer

  • 27441 measured reflections

  • 2829 independent reflections

  • 2540 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.093

  • S = 1.05

  • 2829 reflections

  • 302 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N1 0.82 2.15 2.952 (2) 164
C1—H1⋯O4i 0.98 2.49 3.440 (3) 165
C10—H10⋯O1ii 0.98 2.36 3.232 (2) 148
C18—H18A⋯O6 0.97 2.32 2.943 (3) 121
C25—H25⋯O2iii 0.93 2.55 3.299 (4) 138
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{5\over 2}}, -z]; (iii) [-x+{\script{3\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The natural sesquiterpene lactone, 9α - hydroxypartenolide is the main constituent of the chloroform extract of the aerial parts of Anvillea radiata (El Hassany et al., 2004) and of Anvillea garcini (Abdel Sattar et al. (1996). The reactivity of this sesquiterpene lactone and its derivatives have been the subject of several studies Neukirch et al., 2003; Hwang et al., 2006; Neelakantan et al., 2009), in order to prepare products with high value which can be used in the pharmacological industry. In this context, we have synthesed, from 9α-hydroxyparthenolide, the 6β,7α-epoxy-9α- hydoxypartenolide (9α-hydroxy-4,8-dimethyl-12-methylen-3,14-dioxa-tetracyclo [9.3.0.02,4]tetradec-7-en-13-one)(Moumou et al., 2010). This Epoxy-hydroxypartenolide treated with one equivalent of 1-(2-hydroxyphenyl- piperazine) gives the title compound(I)with a yield of 93%. The crystal structure of (I) is reported herein.The molecule contains a fused ring system and hydroxyphenylpiperazine group as a substituent to a lactone ring. The molecular structure of (I), Fig.1, shows the lactone ring to adopt an envelope conformation, as indicated by Cremer & Pople (1975) puckering parameters Q = 0.306 (2) Å and ϕ =79.5 (4)°. The ten-membered ring displays an approximate chair-chair conformation, while the piperazine ring has a perfect chair conformation with QT = 0.582 (3) Å, θ = 180.0 (2)° and ϕ2 =319 (24)°. In the crystal, C—H···O hydrogen bonding links the molecules into sheets lying parallel to the bc plane (Table 1, Fig.2). In addition an intramolecular O—H···N hydrogen bond is also observed.

Related literature top

For background to the medicinal uses of the plant Anvillea adiata, see: Abdel Sattar et al. (1996); El Hassany et al. (2004); Qureshi et al.(1990). For the reactivity of this sesquiterpene, see: Hwang et al. (2006); Neukirch et al. (2003); Neelakantan et al. (2009). For ring puckering parameters, see: Cremer & Pople (1975). For the synthesis, see: Moumou et al. (2010).

Experimental top

The mixture of 6β,7α-epoxy-9α-hydoxypartenolide(9α-hydroxy- 4,8-dimethyl-12-methylen-3,14-tricyclo [9.3.0.02,4]tetradec-7-en-13-one) (5 g, 3.57 mmol) and one equivalent of 1-(2-Hydroxyphenyl-piperazine) in EtOH (30 ml)was stirred for twelve hours at room temperature. Then the reaction was stopped by adding water (20 ml) and extracted three times with ethyl acetate (3 x 30 ml). The combined organic layers were dried over anhydrous MgSO4, filtered and concentrated under vacuum to give 1.5 g (3.32 mmol) of the title compound, which was recrystalized in ethyl acetate.

Refinement top

Reflections (0 0 2) and (0 1 1) were obstructed by the beam stop and were omitted from the refinement. All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl, OH). In the absence of significant anomalous scattering, the absolute configuration could not be reliably determined and thus Friedel pairs were merged and any references to the Flack parameter were removed.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. : Partial packing view showing the C–H···O hydrogen bonds as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.
10α-Hydroxy-13-{[4-(2-hydroxyphenyl)piperazin-1-yl]methyl}-4,9-dimethyl- 3,8,15-trioxatetracyclo[10.3.0.02,4.07,9]pentadecan-14-one top
Crystal data top
C25H34N2O6F(000) = 984
Mr = 458.54Dx = 1.259 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4934 reflections
a = 8.0978 (2) Åθ = 2.4–26.4°
b = 10.3660 (3) ŵ = 0.09 mm1
c = 28.8194 (8) ÅT = 180 K
V = 2419.15 (11) Å3Platelet, colourless
Z = 40.27 × 0.21 × 0.06 mm
Data collection top
Agilent Xcalibur Sapphire1 long-nozzle
diffractometer
2540 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 26.4°, θmin = 2.4°
Detector resolution: 8.2632 pixels mm-1h = 1010
ω scank = 1212
27441 measured reflectionsl = 3536
2829 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0508P)2 + 0.396P]
where P = (Fo2 + 2Fc2)/3
2829 reflections(Δ/σ)max = 0.002
302 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C25H34N2O6V = 2419.15 (11) Å3
Mr = 458.54Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0978 (2) ŵ = 0.09 mm1
b = 10.3660 (3) ÅT = 180 K
c = 28.8194 (8) Å0.27 × 0.21 × 0.06 mm
Data collection top
Agilent Xcalibur Sapphire1 long-nozzle
diffractometer
2540 reflections with I > 2σ(I)
27441 measured reflectionsRint = 0.034
2829 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
2829 reflectionsΔρmin = 0.18 e Å3
302 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9344 (2)0.90928 (19)0.02860 (7)0.0367 (4)
H10.88500.83250.04280.044*
C20.9628 (2)1.01210 (18)0.06365 (7)0.0365 (4)
H21.00981.09130.05060.044*
C30.8665 (2)1.0334 (2)0.10613 (7)0.0396 (4)
C40.8570 (3)1.1717 (2)0.12197 (7)0.0445 (5)
H4A0.84641.17340.15550.053*
H4B0.95931.21500.11390.053*
C50.7118 (3)1.2463 (2)0.10047 (8)0.0462 (5)
H5A0.73271.33800.10370.055*
H5B0.61231.22650.11780.055*
C60.6825 (2)1.21618 (18)0.05000 (7)0.0379 (4)
H60.78281.20670.03130.045*
C70.5359 (2)1.1463 (2)0.03197 (7)0.0396 (4)
C80.5440 (2)1.06794 (19)0.01276 (7)0.0394 (4)
H80.43061.04430.02110.047*
C90.6417 (2)0.94191 (19)0.00614 (7)0.0372 (4)
H9A0.61980.90860.02470.045*
H9B0.60220.87870.02830.045*
C100.8304 (2)0.95749 (18)0.01223 (7)0.0335 (4)
H100.85301.04980.01580.040*
C111.0873 (3)0.8737 (2)0.03774 (8)0.0446 (5)
C120.9101 (3)0.8883 (2)0.05318 (7)0.0412 (5)
H120.86080.80240.05610.049*
C130.9013 (3)0.9554 (3)0.10023 (7)0.0496 (5)
H13A0.97260.91010.12180.060*
H13B0.94351.04250.09700.060*
C140.7331 (3)0.9440 (2)0.12263 (8)0.0483 (5)
H14A0.73790.93690.15580.073*
H14B0.62730.97750.11360.073*
H14C0.74860.86040.10900.073*
C150.3946 (3)1.1047 (3)0.06229 (9)0.0563 (6)
H15A0.29261.13460.04920.084*
H15B0.39281.01230.06430.084*
H15C0.40821.14070.09270.084*
C160.6773 (3)0.8326 (2)0.13338 (8)0.0527 (6)
H16A0.75480.79540.15530.063*
H16B0.67410.77730.10620.063*
C170.5082 (3)0.8371 (2)0.15515 (8)0.0536 (6)
H17A0.42880.86970.13280.064*
H17B0.47460.75080.16410.064*
C180.5649 (4)1.0502 (2)0.18283 (8)0.0589 (6)
H18A0.56781.10510.21010.071*
H18B0.48731.08700.16090.071*
C190.7342 (4)1.0444 (2)0.16120 (8)0.0562 (6)
H19A0.76891.13080.15260.067*
H19B0.81251.01120.18370.067*
C200.3698 (3)0.9137 (3)0.22451 (7)0.0543 (6)
C210.2250 (4)0.8504 (4)0.21250 (9)0.0761 (9)
H210.21590.81360.18320.091*
C220.3734 (4)0.9667 (3)0.26908 (8)0.0709 (8)
C230.0932 (4)0.8409 (5)0.24322 (11)0.0987 (13)
H230.00190.79680.23450.118*
C240.1028 (5)0.8958 (5)0.28612 (11)0.1027 (14)
H240.01370.89060.30640.123*
C250.2443 (5)0.9589 (4)0.29923 (10)0.0941 (12)
H250.25190.99600.32850.113*
N10.7348 (2)0.96134 (17)0.11978 (6)0.0455 (4)
N20.5106 (3)0.92072 (19)0.19603 (6)0.0495 (5)
O10.5493 (2)1.28526 (14)0.02754 (5)0.0491 (4)
O21.03111 (18)0.97758 (15)0.10802 (5)0.0469 (4)
O31.09685 (17)0.88006 (14)0.00863 (5)0.0451 (4)
O41.2079 (2)0.85660 (19)0.06106 (7)0.0647 (5)
O50.6083 (2)1.14333 (15)0.04947 (5)0.0477 (4)
H50.62671.09690.07190.071*
O60.5154 (3)1.0222 (2)0.28351 (6)0.0802 (7)
H6A0.52091.09600.27330.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0321 (9)0.0299 (9)0.0479 (11)0.0032 (8)0.0011 (8)0.0058 (8)
C20.0312 (9)0.0324 (9)0.0459 (11)0.0008 (8)0.0036 (8)0.0072 (8)
C30.0390 (10)0.0366 (10)0.0432 (10)0.0039 (9)0.0050 (9)0.0047 (9)
C40.0502 (12)0.0408 (11)0.0424 (11)0.0014 (10)0.0038 (10)0.0026 (9)
C50.0512 (12)0.0354 (10)0.0520 (12)0.0050 (10)0.0030 (10)0.0036 (9)
C60.0368 (9)0.0273 (9)0.0495 (11)0.0038 (8)0.0024 (9)0.0031 (8)
C70.0292 (9)0.0368 (10)0.0528 (11)0.0055 (8)0.0020 (9)0.0069 (9)
C80.0286 (9)0.0387 (11)0.0510 (11)0.0012 (8)0.0058 (9)0.0084 (9)
C90.0334 (9)0.0302 (9)0.0481 (11)0.0046 (8)0.0032 (8)0.0024 (9)
C100.0338 (9)0.0247 (8)0.0422 (10)0.0027 (8)0.0003 (8)0.0024 (8)
C110.0449 (11)0.0295 (10)0.0595 (14)0.0035 (9)0.0052 (10)0.0031 (9)
C120.0423 (11)0.0317 (10)0.0497 (12)0.0038 (9)0.0032 (9)0.0042 (9)
C130.0526 (12)0.0487 (12)0.0476 (12)0.0130 (11)0.0063 (10)0.0030 (10)
C140.0514 (12)0.0449 (12)0.0486 (12)0.0008 (11)0.0045 (10)0.0093 (10)
C150.0347 (10)0.0661 (15)0.0681 (15)0.0008 (11)0.0093 (11)0.0049 (13)
C160.0673 (15)0.0400 (11)0.0507 (13)0.0082 (11)0.0034 (11)0.0016 (10)
C170.0652 (15)0.0479 (12)0.0477 (12)0.0124 (12)0.0016 (11)0.0064 (10)
C180.0862 (18)0.0468 (13)0.0437 (12)0.0020 (14)0.0024 (12)0.0055 (10)
C190.0812 (17)0.0421 (12)0.0453 (12)0.0141 (13)0.0024 (12)0.0038 (10)
C200.0631 (14)0.0615 (15)0.0383 (11)0.0001 (12)0.0038 (10)0.0010 (10)
C210.0652 (17)0.109 (2)0.0540 (15)0.0100 (18)0.0020 (13)0.0159 (16)
C220.0793 (18)0.093 (2)0.0400 (12)0.0080 (18)0.0029 (13)0.0030 (14)
C230.0665 (18)0.152 (4)0.077 (2)0.017 (2)0.0028 (16)0.017 (2)
C240.080 (2)0.166 (4)0.0622 (18)0.005 (3)0.0191 (17)0.009 (2)
C250.099 (2)0.136 (3)0.0474 (15)0.010 (3)0.0122 (16)0.0135 (19)
N10.0591 (11)0.0380 (9)0.0395 (9)0.0088 (9)0.0025 (8)0.0001 (8)
N20.0633 (12)0.0474 (10)0.0377 (9)0.0045 (9)0.0025 (9)0.0010 (8)
O10.0493 (8)0.0347 (7)0.0632 (9)0.0146 (7)0.0045 (8)0.0050 (7)
O20.0422 (8)0.0502 (9)0.0483 (8)0.0074 (7)0.0107 (7)0.0054 (7)
O30.0345 (7)0.0412 (8)0.0595 (9)0.0091 (6)0.0002 (7)0.0014 (7)
O40.0506 (10)0.0639 (11)0.0795 (12)0.0140 (9)0.0195 (9)0.0087 (10)
O50.0556 (9)0.0409 (8)0.0464 (8)0.0056 (7)0.0029 (7)0.0096 (7)
O60.0937 (15)0.1145 (18)0.0323 (8)0.0403 (14)0.0040 (9)0.0159 (10)
Geometric parameters (Å, º) top
C1—O31.468 (2)C13—H13A0.9700
C1—C21.486 (3)C13—H13B0.9700
C1—C101.531 (3)C14—H14A0.9600
C1—H10.9800C14—H14B0.9600
C2—O21.438 (2)C14—H14C0.9600
C2—C31.468 (3)C15—H15A0.9600
C2—H20.9800C15—H15B0.9600
C3—O21.454 (2)C15—H15C0.9600
C3—C141.501 (3)C16—N11.467 (3)
C3—C41.507 (3)C16—C171.507 (4)
C4—C51.538 (3)C16—H16A0.9700
C4—H4A0.9700C16—H16B0.9700
C4—H4B0.9700C17—N21.463 (3)
C5—C61.507 (3)C17—H17A0.9700
C5—H5A0.9700C17—H17B0.9700
C5—H5B0.9700C18—N21.462 (3)
C6—O11.447 (2)C18—C191.507 (4)
C6—C71.484 (3)C18—H18A0.9700
C6—H60.9800C18—H18B0.9700
C7—O11.450 (3)C19—N11.472 (3)
C7—C151.503 (3)C19—H19A0.9700
C7—C81.525 (3)C19—H19B0.9700
C8—O51.415 (2)C20—C211.387 (4)
C8—C91.539 (3)C20—C221.397 (3)
C8—H80.9800C20—N21.407 (3)
C9—C101.546 (3)C21—C231.390 (4)
C9—H9A0.9700C21—H210.9300
C9—H9B0.9700C22—O61.352 (4)
C10—C121.524 (3)C22—C251.362 (4)
C10—H100.9800C23—C241.363 (5)
C11—O41.198 (3)C23—H230.9300
C11—O31.340 (3)C24—C251.372 (5)
C11—C121.510 (3)C24—H240.9300
C12—C131.525 (3)C25—H250.9300
C12—H120.9800O5—H50.8200
C13—N11.463 (3)O6—H6A0.8200
O3—C1—C2106.00 (15)N1—C13—H13A108.8
O3—C1—C10105.01 (15)C12—C13—H13A108.8
C2—C1—C10111.93 (16)N1—C13—H13B108.8
O3—C1—H1111.2C12—C13—H13B108.8
C2—C1—H1111.2H13A—C13—H13B107.7
C10—C1—H1111.2C3—C14—H14A109.5
O2—C2—C360.01 (12)C3—C14—H14B109.5
O2—C2—C1119.04 (16)H14A—C14—H14B109.5
C3—C2—C1126.31 (18)C3—C14—H14C109.5
O2—C2—H2113.6H14A—C14—H14C109.5
C3—C2—H2113.6H14B—C14—H14C109.5
C1—C2—H2113.6C7—C15—H15A109.5
O2—C3—C258.99 (12)C7—C15—H15B109.5
O2—C3—C14113.75 (17)H15A—C15—H15B109.5
C2—C3—C14123.63 (19)C7—C15—H15C109.5
O2—C3—C4114.47 (17)H15A—C15—H15C109.5
C2—C3—C4115.01 (18)H15B—C15—H15C109.5
C14—C3—C4117.03 (19)N1—C16—C17111.8 (2)
C3—C4—C5113.32 (18)N1—C16—H16A109.3
C3—C4—H4A108.9C17—C16—H16A109.3
C5—C4—H4A108.9N1—C16—H16B109.3
C3—C4—H4B108.9C17—C16—H16B109.3
C5—C4—H4B108.9H16A—C16—H16B107.9
H4A—C4—H4B107.7N2—C17—C16110.0 (2)
C6—C5—C4113.91 (18)N2—C17—H17A109.7
C6—C5—H5A108.8C16—C17—H17A109.7
C4—C5—H5A108.8N2—C17—H17B109.7
C6—C5—H5B108.8C16—C17—H17B109.7
C4—C5—H5B108.8H17A—C17—H17B108.2
H5A—C5—H5B107.7N2—C18—C19110.2 (2)
O1—C6—C759.28 (12)N2—C18—H18A109.6
O1—C6—C5116.54 (17)C19—C18—H18A109.6
C7—C6—C5124.42 (19)N2—C18—H18B109.6
O1—C6—H6114.9C19—C18—H18B109.6
C7—C6—H6114.9H18A—C18—H18B108.1
C5—C6—H6114.9N1—C19—C18111.2 (2)
O1—C7—C659.10 (13)N1—C19—H19A109.4
O1—C7—C15113.14 (19)C18—C19—H19A109.4
C6—C7—C15123.0 (2)N1—C19—H19B109.4
O1—C7—C8116.85 (17)C18—C19—H19B109.4
C6—C7—C8121.45 (17)H19A—C19—H19B108.0
C15—C7—C8111.79 (19)C21—C20—C22115.7 (3)
O5—C8—C7110.71 (17)C21—C20—N2124.3 (2)
O5—C8—C9111.84 (17)C22—C20—N2119.9 (3)
C7—C8—C9111.69 (16)C20—C21—C23121.6 (3)
O5—C8—H8107.5C20—C21—H21119.2
C7—C8—H8107.5C23—C21—H21119.2
C9—C8—H8107.5O6—C22—C25118.8 (3)
C8—C9—C10113.91 (16)O6—C22—C20117.9 (3)
C8—C9—H9A108.8C25—C22—C20123.1 (3)
C10—C9—H9A108.8C24—C23—C21120.3 (3)
C8—C9—H9B108.8C24—C23—H23119.9
C10—C9—H9B108.8C21—C23—H23119.9
H9A—C9—H9B107.7C23—C24—C25119.7 (3)
C12—C10—C1102.06 (15)C23—C24—H24120.1
C12—C10—C9117.19 (17)C25—C24—H24120.1
C1—C10—C9114.97 (16)C22—C25—C24119.6 (3)
C12—C10—H10107.3C22—C25—H25120.2
C1—C10—H10107.3C24—C25—H25120.2
C9—C10—H10107.3C13—N1—C16110.91 (19)
O4—C11—O3121.3 (2)C13—N1—C19109.86 (18)
O4—C11—C12128.6 (2)C16—N1—C19108.35 (16)
O3—C11—C12110.09 (18)C20—N2—C18116.3 (2)
C11—C12—C10102.80 (17)C20—N2—C17115.4 (2)
C11—C12—C13110.61 (18)C18—N2—C17109.78 (17)
C10—C12—C13117.03 (17)C6—O1—C761.63 (12)
C11—C12—H12108.7C2—O2—C361.00 (13)
C10—C12—H12108.7C11—O3—C1110.46 (16)
C13—C12—H12108.7C8—O5—H5109.5
N1—C13—C12113.86 (18)C22—O6—H6A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N10.822.152.952 (2)164
C1—H1···O4i0.982.493.440 (3)165
C10—H10···O1ii0.982.363.232 (2)148
C18—H18A···O60.972.322.943 (3)121
C25—H25···O2iii0.932.553.299 (4)138
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+5/2, z; (iii) x+3/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC25H34N2O6
Mr458.54
Crystal system, space groupOrthorhombic, P212121
Temperature (K)180
a, b, c (Å)8.0978 (2), 10.3660 (3), 28.8194 (8)
V3)2419.15 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.27 × 0.21 × 0.06
Data collection
DiffractometerAgilent Xcalibur Sapphire1 long-nozzle
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27441, 2829, 2540
Rint0.034
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.093, 1.05
No. of reflections2829
No. of parameters302
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N10.822.152.952 (2)164
C1—H1···O4i0.982.493.440 (3)165
C10—H10···O1ii0.982.363.232 (2)148
C18—H18A···O60.972.322.943 (3)121
C25—H25···O2iii0.932.553.299 (4)138
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+1/2, y+5/2, z; (iii) x+3/2, y+2, z+1/2.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for financial support.

References

First citationAbdel Sattar, E., Galal, A. M. & Mossa, J. S. (1996). J. Nat. Prod. 59, 403–405.  CrossRef CAS PubMed Google Scholar
First citationAgilent (2010). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEl Hassany, B., El Hanbali, F., Akssira, M., Mellouki, F., Haidou, A. & Barero, A. F. (2004). Fitoterapia, 75, 573–576.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHwang, D.-R., Wu, Y.-S., Chang, C.-W., Lien, T.-W., Chen, W.-C., Tan, U.-K., Hsu, J. T. A. & Hsieh, H.-P. (2006). Bioorg. Med. Chem. 14, 83—91.  Google Scholar
First citationMoumou, M., Akssira, M., El Ammari, L., Benharref, A. & Berraho, M. (2010). Acta Cryst. E66, o2395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNeelakantan, S., Nasim, Sh., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNeukirch, H., Kaneider, N. C., Wiedermann, C. J., Guerriero, A. & D'Ambrosio, M. (2003). Bioorg. Med. Chem. 11, 1503–1510.  Web of Science CrossRef PubMed CAS Google Scholar
First citationQureshi, S., Ageel, A. M., Al-Yahya, M. A., Tariq, M., Mossa, J. S. & Shah, A. H. (1990). J. Ethnopharmacol. 28, 157–162.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds