organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1408

2-Chloro-N-(2,6-di­methyl­phen­yl)benzamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Mathematics and Physics, Faculty of Mechanical Engineering STU, Námestie Slobody 17, SK-812 37 Bratislava, Slovak Republic, and cInstitute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovak Republic
*Correspondence e-mail: gowdabt@yahoo.com

(Received 29 March 2012; accepted 10 April 2012; online 18 April 2012)

In the title compound, C15H14ClNO, the dihedral angle between the benzoyl and the aniline rings is 3.30 (18)°. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains running along the a axis.

Related literature

For studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Bowes et al. (2003[Bowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1-o3.]); Gowda et al. (2000[Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779-790.], 2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975-o1976.], 2008[Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1493.]); Saeed et al. (2010[Saeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808-o2809.]), on N-chloro­aryl­sulfonamides, see: Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]) and on N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14ClNO

  • Mr = 259.72

  • Monoclinic, P 21 /n

  • a = 4.8322 (3) Å

  • b = 12.7817 (10) Å

  • c = 21.8544 (12) Å

  • β = 90.778 (5)°

  • V = 1349.69 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 295 K

  • 0.51 × 0.30 × 0.11 mm

Data collection
  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: analytical [CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]), based on expressions derived by Clark & Reid (1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])] Tmin = 0.907, Tmax = 0.971

  • 18665 measured reflections

  • 2469 independent reflections

  • 1735 reflections with I > 2σ(I)

  • Rint = 0.081

Refinement
  • R[F2 > 2σ(F2)] = 0.092

  • wR(F2) = 0.248

  • S = 1.12

  • 2469 reflections

  • 168 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 (2) 1.96 (2) 2.818 (4) 172 (4)
Symmetry code: (i) x+1, y, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The amide and sulfonamide moieties are the constituents of many biologically important compounds. As part of studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Bowes et al., 2003; Gowda et al., 2000, 2007, 2008; Saeed et al., 2010), N-chloroarylsulfonamides (Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of 2-chloro-N-(2,6-dimethylphenyl)benzamide has been determined (Fig. 1).

In the title compound, one of the ortho-methyl groups in the aniline ring is positioned syn to the N—H bond, while the other ortho- methyl group is positioned anti to the N—H bond, the latter and the C=O bond being anti to each other. Further, the amide oxygen is syn to the ortho-chloro group in the benzoyl ring, similar to that observed in 2-chloro-N-(2,6-dichlorophenyl)benzamide (Gowda et al., 2008). In the title compound, the amide group forms dihedral angles of 63.26 (22)° and 59.88 (23)°, respectively, with the 2-chlorobenzoyl and the 2,6-dimethyl- anilino rings, while the angle between the benzoyl and the anilino rings is 3.46 (17)°.

In the crystal structure, intermolecular N1—H1···O1 hydrogen bonds (Table 1) link the molecules into infinite chains running along the a-axis. Part of the crystal structure is shown in Fig. 2.

Related literature top

For studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Bowes et al. (2003); Gowda et al. (2000, 2007, 2008); Saeed et al. (2010), on N-chloroarylsulfonamides, see: Jyothi & Gowda (2004) and on N-bromoarylsulfonamides, see: Usha & Gowda (2006).

Experimental top

The title compound was prepared by a method similar to the one described by Gowda et al. (2008). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra.

Rod like colourless single crystals of the title compound used in the X-ray diffraction studies were obtained by slow evaporation of the solvent from its ethanol solution of the compound (0.5 g in about 30 ml of ethanol) at room temperature.

Refinement top

Hydrogen atoms were placed in calculated positions with C–H distances of 0.93 Å (C-aromatic), 0.96 Å (C-methyl) and constrained to ride on their parent atoms. The amide H atom was visible in a difference map and refined with the N—H distance restrained to 0.86 (1) Å. The Uiso(H) values were set at 1.2Ueq (C-aromatic, N) or 1.5Ueq (C-methyl).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing view of the title compound. Molecular links along a-axis are generated by N–H···O hydrogen bonds which are shown by dashed lines. H atoms have been omitted for clarity.
2-Chloro-N-(2,6-dimethylphenyl)benzamide top
Crystal data top
C15H14ClNOF(000) = 544
Mr = 259.72Dx = 1.278 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3462 reflections
a = 4.8322 (3) Åθ = 3.7–29.5°
b = 12.7817 (10) ŵ = 0.27 mm1
c = 21.8544 (12) ÅT = 295 K
β = 90.778 (5)°Rod, colourless
V = 1349.69 (15) Å30.51 × 0.30 × 0.11 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2469 independent reflections
Graphite monochromator1735 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1Rint = 0.081
ω scansθmax = 25.3°, θmin = 4.2°
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
h = 55
Tmin = 0.907, Tmax = 0.971k = 1515
18665 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.092Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.248H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.080P)2 + 2.4052P]
where P = (Fo2 + 2Fc2)/3
2469 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.50 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C15H14ClNOV = 1349.69 (15) Å3
Mr = 259.72Z = 4
Monoclinic, P21/nMo Kα radiation
a = 4.8322 (3) ŵ = 0.27 mm1
b = 12.7817 (10) ÅT = 295 K
c = 21.8544 (12) Å0.51 × 0.30 × 0.11 mm
β = 90.778 (5)°
Data collection top
Oxford Diffraction Xcalibur Ruby Gemini
diffractometer
2469 independent reflections
Absorption correction: analytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
1735 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.971Rint = 0.081
18665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0921 restraint
wR(F2) = 0.248H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.50 e Å3
2469 reflectionsΔρmin = 0.27 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5223 (8)0.2456 (4)0.47475 (19)0.0494 (10)
C20.3612 (11)0.3360 (4)0.4743 (2)0.0660 (13)
C30.3033 (14)0.3824 (5)0.5300 (3)0.0892 (19)
H30.19270.44190.53070.107*
C40.4038 (14)0.3431 (5)0.5834 (3)0.094 (2)
H40.36320.37610.62020.113*
C50.5672 (11)0.2539 (5)0.5836 (2)0.0720 (15)
H50.63490.22710.62040.086*
C60.6293 (9)0.2050 (4)0.5296 (2)0.0528 (11)
C70.8109 (11)0.1086 (4)0.5297 (2)0.0720 (15)
H7A0.80960.07710.56960.108*
H7B0.99670.12810.51970.108*
H7C0.74170.05960.50.108*
C80.2532 (14)0.3832 (4)0.4152 (3)0.0830 (17)
H8A0.23490.45750.420.124*
H8B0.07590.35340.40520.124*
H8C0.38030.36850.38290.124*
C90.3874 (8)0.1464 (3)0.38474 (18)0.0438 (10)
C100.4897 (8)0.0847 (4)0.3306 (2)0.0533 (11)
C110.6640 (10)0.0015 (4)0.3394 (2)0.0661 (13)
H110.72860.01410.37860.079*
C120.7455 (13)0.0601 (5)0.2903 (3)0.0911 (19)
H120.86330.11660.29680.109*
C130.6524 (15)0.0373 (6)0.2326 (3)0.097 (2)
H130.70550.07890.19980.116*
C140.4789 (14)0.0476 (6)0.2226 (3)0.0887 (19)
H140.41740.06430.18330.106*
C150.3997 (10)0.1063 (4)0.2718 (2)0.0649 (13)
N10.5818 (7)0.1927 (3)0.41875 (15)0.0460 (9)
H10.756 (4)0.180 (4)0.415 (2)0.055*
O10.1424 (6)0.1494 (3)0.39531 (15)0.0656 (10)
Cl10.1880 (4)0.21406 (14)0.25687 (7)0.0994 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.050 (2)0.053 (3)0.045 (2)0.0038 (19)0.0043 (18)0.0021 (19)
C20.079 (3)0.063 (3)0.057 (3)0.019 (3)0.001 (2)0.000 (2)
C30.119 (5)0.076 (4)0.073 (4)0.039 (4)0.007 (3)0.022 (3)
C40.127 (5)0.096 (5)0.061 (4)0.029 (4)0.013 (3)0.028 (3)
C50.086 (3)0.089 (4)0.041 (3)0.002 (3)0.001 (2)0.006 (3)
C60.056 (2)0.056 (3)0.046 (2)0.004 (2)0.0018 (19)0.002 (2)
C70.079 (3)0.082 (4)0.055 (3)0.018 (3)0.009 (2)0.007 (3)
C80.118 (5)0.065 (3)0.066 (3)0.033 (3)0.004 (3)0.006 (3)
C90.041 (2)0.052 (3)0.039 (2)0.0011 (18)0.0020 (16)0.0078 (18)
C100.042 (2)0.070 (3)0.048 (2)0.005 (2)0.0017 (18)0.005 (2)
C110.061 (3)0.070 (3)0.067 (3)0.001 (3)0.002 (2)0.016 (3)
C120.087 (4)0.079 (4)0.107 (5)0.007 (3)0.012 (4)0.036 (4)
C130.110 (5)0.108 (5)0.073 (4)0.019 (4)0.020 (4)0.046 (4)
C140.101 (4)0.112 (5)0.053 (3)0.019 (4)0.000 (3)0.019 (3)
C150.068 (3)0.074 (3)0.052 (3)0.012 (3)0.004 (2)0.003 (2)
N10.0393 (17)0.056 (2)0.0428 (19)0.0052 (16)0.0047 (15)0.0015 (16)
O10.0413 (17)0.093 (3)0.062 (2)0.0015 (16)0.0020 (14)0.0100 (18)
Cl10.1313 (14)0.1054 (13)0.0612 (9)0.0210 (10)0.0121 (8)0.0189 (8)
Geometric parameters (Å, º) top
C1—C21.394 (6)C8—H8C0.96
C1—C61.398 (6)C9—O11.210 (5)
C1—N11.431 (5)C9—N11.329 (5)
C2—C31.386 (7)C9—C101.511 (6)
C2—C81.511 (7)C10—C111.369 (7)
C3—C41.355 (9)C10—C151.379 (7)
C3—H30.93C11—C121.392 (8)
C4—C51.387 (8)C11—H110.93
C4—H40.93C12—C131.365 (10)
C5—C61.373 (7)C12—H120.93
C5—H50.93C13—C141.387 (9)
C6—C71.512 (7)C13—H130.93
C7—H7A0.96C14—C151.370 (8)
C7—H7B0.96C14—H140.93
C7—H7C0.96C15—Cl11.744 (6)
C8—H8A0.96N1—H10.860 (19)
C8—H8B0.96
C2—C1—C6120.9 (4)C2—C8—H8C109.5
C2—C1—N1120.3 (4)H8A—C8—H8C109.5
C6—C1—N1118.8 (4)H8B—C8—H8C109.5
C3—C2—C1117.9 (5)O1—C9—N1124.4 (4)
C3—C2—C8120.6 (5)O1—C9—C10119.8 (4)
C1—C2—C8121.5 (4)N1—C9—C10115.7 (3)
C4—C3—C2121.6 (5)C11—C10—C15118.2 (5)
C4—C3—H3119.2C11—C10—C9120.2 (4)
C2—C3—H3119.2C15—C10—C9121.6 (4)
C3—C4—C5120.2 (5)C10—C11—C12120.7 (6)
C3—C4—H4119.9C10—C11—H11119.6
C5—C4—H4119.9C12—C11—H11119.6
C6—C5—C4120.3 (5)C13—C12—C11119.9 (6)
C6—C5—H5119.9C13—C12—H12120
C4—C5—H5119.9C11—C12—H12120
C5—C6—C1119.0 (4)C12—C13—C14120.2 (6)
C5—C6—C7120.2 (4)C12—C13—H13119.9
C1—C6—C7120.8 (4)C14—C13—H13119.9
C6—C7—H7A109.5C15—C14—C13118.7 (6)
C6—C7—H7B109.5C15—C14—H14120.7
H7A—C7—H7B109.5C13—C14—H14120.7
C6—C7—H7C109.5C14—C15—C10122.3 (6)
H7A—C7—H7C109.5C14—C15—Cl1117.1 (5)
H7B—C7—H7C109.5C10—C15—Cl1120.6 (4)
C2—C8—H8A109.5C9—N1—C1122.7 (3)
C2—C8—H8B109.5C9—N1—H1124 (3)
H8A—C8—H8B109.5C1—N1—H1112 (3)
C6—C1—C2—C32.0 (8)N1—C9—C10—C15122.9 (5)
N1—C1—C2—C3178.2 (5)C15—C10—C11—C120.6 (7)
C6—C1—C2—C8177.6 (5)C9—C10—C11—C12175.8 (5)
N1—C1—C2—C82.2 (8)C10—C11—C12—C130.3 (9)
C1—C2—C3—C41.4 (10)C11—C12—C13—C140.6 (10)
C8—C2—C3—C4178.2 (7)C12—C13—C14—C151.2 (10)
C2—C3—C4—C50.6 (11)C13—C14—C15—C100.9 (9)
C3—C4—C5—C60.3 (10)C13—C14—C15—Cl1178.6 (5)
C4—C5—C6—C10.9 (8)C11—C10—C15—C140.0 (7)
C4—C5—C6—C7179.1 (5)C9—C10—C15—C14176.4 (5)
C2—C1—C6—C51.8 (7)C11—C10—C15—Cl1177.6 (4)
N1—C1—C6—C5178.4 (4)C9—C10—C15—Cl16.0 (6)
C2—C1—C6—C7178.2 (5)O1—C9—N1—C14.6 (7)
N1—C1—C6—C71.6 (7)C10—C9—N1—C1173.9 (4)
O1—C9—C10—C11117.8 (5)C2—C1—N1—C965.8 (6)
N1—C9—C10—C1160.8 (6)C6—C1—N1—C9114.4 (5)
O1—C9—C10—C1558.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.86 (2)1.96 (2)2.818 (4)172 (4)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H14ClNO
Mr259.72
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)4.8322 (3), 12.7817 (10), 21.8544 (12)
β (°) 90.778 (5)
V3)1349.69 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.51 × 0.30 × 0.11
Data collection
DiffractometerOxford Diffraction Xcalibur Ruby Gemini
diffractometer
Absorption correctionAnalytical
[CrysAlis RED (Oxford Diffraction, 2009), based on expressions derived by Clark & Reid (1995)]
Tmin, Tmax0.907, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
18665, 2469, 1735
Rint0.081
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.092, 0.248, 1.12
No. of reflections2469
No. of parameters168
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.27

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.860 (19)1.96 (2)2.818 (4)172 (4)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

VZR thanks the University Grants Commission, Government of India, New Delhi for award of an RFSMS research fellowship. JS, VV and JK thank the Grant Agencies for their financial support (VEGA Grant Agency of Slovak Ministry of Education 1/0679/11; Research and Development Agency of Slovakia (APVV-0202–10) and the Structural Funds, Inter­reg IIIA, for financial support in purchasing the diffractometer.

References

First citationBowes, K. F., Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2003). Acta Cryst. C59, o1–o3.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.  CAS Google Scholar
First citationGowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008). Acta Cryst. E64, o1493.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSaeed, A., Arshad, M. & Simpson, J. (2010). Acta Cryst. E66, o2808–o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1408
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds