organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1323

Resorcinol ninhydrin complex: 1,5,9-trihy­dr­oxy-8-oxa­tetra­cyclo­[7.7.0.02,7.010,15]hexa­deca-2,4,6,10(15),11,13-hexaen-16-one

aDepartment of Physics, Government Arts College for Women, Pudukkottaii 622 001, India, bDepartment of Physics, Cauvery College for Women, Tiruchirappalli 620 018, India, cDepartment of Physics, Shivani Institute of Technology, Tiruchirappalli 620 009, India, dDepartment of Physics, Kalasalingam University, Krishnankoil 626 126, India, and eLaboratory of X-ray Crystallography, Indian Institute of Chemical Technology, Hyderabad 500 007, India
*Correspondence e-mail: s_selvanayagam@rediffmail.com

(Received 30 March 2012; accepted 2 April 2012; online 6 April 2012)

In the title compound, C15H10O5, the cyclo­penta­none (r.m.s. deviation = 0.049 Å) and oxolane (r.m.s. deviation = 0.048 Å) rings make a dihedral angle of 67.91 (4)°. An intra­molecular O—H⋯O hydrogen bond is observed. In the crystal, mol­ecules associate via O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For general background to ninhydrin derivatives, see: Hansen & Joullie (2005[Hansen, D. B. & Joullie, M. M. (2005). Chem. Soc. Rev. 34, 408-417.]); Leane et al. (2004[Leane, M. M., Nankervis, R., Smith, A. & Illum, L. (2004). Int. J. Pharm. 271, 241-249.]). For general background to resorcinol derivatives, see: Chen et al. (2011[Chen, L. P., Zhao, F., Wang, Y., Zhao, L. L., Li, Q. P. & Liu, H. W. (2011). J. Asian. Nat. Prod. Res. 13, 734-743.]); Bao et al. (2010[Bao, L., Wang, M., Zhao, F., Zhao, Y. & Liu, H. (2010). Chem. Biodivers. 7, 2901-2907.]); Zheng & Wu (2007[Zheng, Y. & Wu, F. E. (2007). J. Asian. Nat. Prod. Res. 9, 545-549.]).

[Scheme 1]

Experimental

Crystal data
  • C15H10O5

  • Mr = 270.23

  • Monoclinic, P 21 /c

  • a = 9.1117 (5) Å

  • b = 12.2995 (7) Å

  • c = 10.1177 (5) Å

  • β = 91.837 (1)°

  • V = 1133.30 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 292 K

  • 0.22 × 0.20 × 0.19 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • 12939 measured reflections

  • 2699 independent reflections

  • 2468 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.05

  • 2699 reflections

  • 221 parameters

  • All H-atom parameters refined

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3i 0.90 (2) 2.02 (2) 2.877 (1) 158 (2)
O3—H3A⋯O4ii 0.89 (2) 2.18 (2) 3.013 (1) 157 (2)
O2—H2A⋯O1iii 0.87 (2) 1.92 (2) 2.746 (1) 159 (2)
O3—H3A⋯O2 0.89 (2) 2.33 (2) 2.667 (1) 102 (1)
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON.

Supporting information


Comment top

Resorcinol derivatives posses cytotoxity (Zheng & Wu, 2007; Bao et al., 2010) and antitumor activities (Chen et al., 2011). Ninhydrin analogue was found to be an important reagent to develop finger prints on porous surface (Hansen & Joullie, 2005). Ninhydrin assay is an essential aid in the design and testing of solid dosage forms with different chitosan-drug release profiles (Leane et al., 2004).In view of these importance on ninhydrin and resorcinol derivatives, we have undertaken the crystal structure determination of the present complex, and the results are presented here.

The X-ray study confirmed the molecular structure and atomic connectivity for (I), as illustrated in Fig. 1.

The plane calculation revealed that the benzene, cyclopentanone, oxolane and phenyl rings are in planar. Atoms O1, O2 and O3 deviate by 0.235 (1), 0.916 (1) and 1.166 (1) Å, respectively with respect to the fused rings of benzene and cyclopentanone. Atoms O2, O3 and O4 deviate by -1.127 (1), -0.801 (1) and 0.091 (1) Å, respectively with respect to the fused rings of oxolane and phenyl rings. The dihedral angle between the two half of the molecule with respect to C8-C9 bond is 1.5 (1)°.

The molecular structure is influenced by an intramolecular O—H···O hydrogen bonds. In the molecular packing, O—H···O hydrogen bonds involving atoms O3 and O4 link inversion-related molecules to form R22 (16) graph-set dimer. (Fig. 2 and Table 1). In addition to this atoms, O2 and C11 form a R22(10) graph-set motif in the unit cell with the help of intermolecular hydrogen bonds (Fig.3). A C(8) chain motif is formed in the unit cell with the help of O—H···O hydrogen bonds involving atoms O4 and O3 which results the helical shape arrangement along bc plane of the unit cell (Fig. 4).

Related literature top

For general background to ninhydrin derivatives, see: Hansen & Joullie (2005); Leane et al. (2004). For general background to resorcinol derivatives, see: Chen et al. (2011); Bao et al. (2010); Zheng & Wu (2007).

Experimental top

A mixture of ninhydrin and resorcinol in molar ratio 1:1 were dissolved in dilute acetic medium and stirred well using a temperature controlled magnetic stirrer to yield a homogeneous mixture of solution. Then the solution was allowed to evaporate at room temperature, which yielded a crystalline adduct. Single crystals were grown by slow evaporation from ethanol.

Refinement top

All H atoms were located from a difference Fourier map and refined isotropically.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level
[Figure 2] Fig. 2. Molecular packing of the title compound, viewed along the a axis; H-bonds are shown as dashed lines forms a R22(16) dimers in unit cell. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
[Figure 3] Fig. 3. Molecular packing of the title compound, viewed along the b axis; H-bonds are shown as dashed lines forms a R22(10) dimers in unit cell. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
[Figure 4] Fig. 4. Molecular packing of the title compound, viewed along the c axis; H-bonds are shown as dashed lines forms a C(8) chain-motif in unit cell. For the sake of clarity, H atoms, not involved in hydrogen bonds, have been omitted
1,5,9-trihydroxy-8-oxatetracyclo[7.7.0.02,7.010,15]hexadeca- 2,4,6,10 (15),11,13-hexaen-16-one top
Crystal data top
C15H10O5F(000) = 560
Mr = 270.23Dx = 1.584 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8468 reflections
a = 9.1117 (5) Åθ = 2.2–27.1°
b = 12.2995 (7) ŵ = 0.12 mm1
c = 10.1177 (5) ÅT = 292 K
β = 91.837 (1)°Block, colourless
V = 1133.30 (11) Å30.22 × 0.20 × 0.19 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2468 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 28.0°, θmin = 2.2°
ω scansh = 1211
12939 measured reflectionsk = 1616
2699 independent reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.3056P]
where P = (Fo2 + 2Fc2)/3
2699 reflections(Δ/σ)max < 0.001
221 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C15H10O5V = 1133.30 (11) Å3
Mr = 270.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1117 (5) ŵ = 0.12 mm1
b = 12.2995 (7) ÅT = 292 K
c = 10.1177 (5) Å0.22 × 0.20 × 0.19 mm
β = 91.837 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2468 reflections with I > 2σ(I)
12939 measured reflectionsRint = 0.020
2699 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106All H-atom parameters refined
S = 1.05Δρmax = 0.31 e Å3
2699 reflectionsΔρmin = 0.28 e Å3
221 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.55633 (10)0.40497 (9)0.32526 (9)0.0416 (2)
O20.38544 (11)0.59167 (7)0.40684 (9)0.0382 (2)
H2A0.394 (2)0.5760 (16)0.490 (2)0.058 (5)*
O30.22262 (11)0.65338 (7)0.19634 (9)0.0369 (2)
H3A0.219 (2)0.689 (2)0.272 (2)0.080 (7)*
O40.12067 (11)0.24783 (9)0.55006 (10)0.0444 (3)
H4A0.175 (2)0.2263 (19)0.479 (2)0.076 (6)*
O50.07320 (9)0.50826 (7)0.24520 (8)0.0336 (2)
C10.21080 (14)0.48007 (11)0.02647 (12)0.0345 (3)
H10.1252 (19)0.5225 (14)0.0506 (16)0.042 (4)*
C20.27738 (16)0.41740 (12)0.12105 (13)0.0409 (3)
H20.2341 (19)0.4179 (14)0.2090 (18)0.049 (4)*
C30.40256 (16)0.35623 (11)0.09057 (14)0.0418 (3)
H30.4472 (19)0.3140 (14)0.1582 (17)0.048 (4)*
C40.46396 (14)0.35571 (10)0.03612 (13)0.0366 (3)
H40.5509 (18)0.3132 (14)0.0606 (15)0.041 (4)*
C50.39742 (12)0.41873 (10)0.13132 (11)0.0301 (2)
C60.27356 (12)0.48078 (9)0.10008 (11)0.0285 (2)
C70.44307 (12)0.43593 (10)0.27024 (11)0.0302 (2)
C80.32381 (12)0.50301 (9)0.33703 (11)0.0283 (2)
C90.22170 (12)0.54241 (9)0.21795 (11)0.0289 (2)
C100.22056 (12)0.43138 (9)0.41014 (11)0.0278 (2)
C110.24218 (13)0.36685 (10)0.52153 (11)0.0310 (2)
H110.3393 (17)0.3619 (12)0.5676 (15)0.036 (4)*
C120.12568 (14)0.30692 (10)0.56731 (12)0.0336 (3)
H120.1362 (17)0.2601 (13)0.6454 (16)0.043 (4)*
C130.01040 (13)0.31088 (10)0.50070 (12)0.0328 (3)
C140.03552 (13)0.37657 (10)0.39052 (12)0.0331 (3)
H140.1314 (18)0.3805 (13)0.3462 (15)0.041 (4)*
C150.08212 (12)0.43688 (10)0.34892 (11)0.0290 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0309 (4)0.0562 (6)0.0373 (5)0.0065 (4)0.0056 (4)0.0060 (4)
O20.0455 (5)0.0369 (5)0.0315 (5)0.0098 (4)0.0097 (4)0.0017 (4)
O30.0480 (5)0.0302 (4)0.0321 (5)0.0039 (4)0.0046 (4)0.0019 (3)
O40.0441 (5)0.0478 (6)0.0416 (5)0.0145 (4)0.0066 (4)0.0008 (4)
O50.0264 (4)0.0455 (5)0.0288 (4)0.0020 (3)0.0033 (3)0.0050 (3)
C10.0349 (6)0.0402 (6)0.0281 (6)0.0044 (5)0.0046 (4)0.0013 (5)
C20.0495 (7)0.0471 (7)0.0261 (6)0.0107 (6)0.0005 (5)0.0029 (5)
C30.0504 (8)0.0396 (7)0.0360 (7)0.0074 (6)0.0106 (6)0.0079 (5)
C40.0357 (6)0.0338 (6)0.0408 (7)0.0013 (5)0.0063 (5)0.0008 (5)
C50.0292 (5)0.0319 (6)0.0293 (6)0.0039 (4)0.0003 (4)0.0019 (4)
C60.0293 (5)0.0311 (5)0.0250 (5)0.0044 (4)0.0006 (4)0.0009 (4)
C70.0269 (5)0.0333 (5)0.0304 (6)0.0031 (4)0.0015 (4)0.0047 (4)
C80.0288 (5)0.0309 (5)0.0249 (5)0.0016 (4)0.0051 (4)0.0006 (4)
C90.0292 (5)0.0316 (5)0.0258 (5)0.0004 (4)0.0031 (4)0.0009 (4)
C100.0277 (5)0.0310 (5)0.0247 (5)0.0002 (4)0.0006 (4)0.0026 (4)
C110.0322 (6)0.0333 (6)0.0272 (5)0.0015 (4)0.0031 (4)0.0013 (4)
C120.0404 (6)0.0321 (6)0.0282 (6)0.0005 (5)0.0011 (5)0.0002 (4)
C130.0354 (6)0.0323 (6)0.0310 (6)0.0049 (5)0.0061 (4)0.0067 (4)
C140.0284 (5)0.0397 (6)0.0310 (6)0.0016 (5)0.0011 (4)0.0055 (5)
C150.0297 (5)0.0334 (6)0.0239 (5)0.0022 (4)0.0013 (4)0.0032 (4)
Geometric parameters (Å, º) top
O1—C71.2178 (14)C4—H40.975 (17)
O2—C81.4063 (14)C5—C61.3904 (16)
O2—H2A0.87 (2)C5—C71.4683 (16)
O3—C91.3823 (14)C6—C91.5021 (16)
O3—H3A0.89 (2)C7—C81.5379 (16)
O4—C131.3756 (15)C8—C101.5011 (16)
O4—H4A0.90 (2)C8—C91.5749 (15)
O5—C151.3686 (14)C10—C111.3873 (16)
O5—C91.4516 (14)C10—C151.3890 (15)
C1—C21.3839 (19)C11—C121.3843 (17)
C1—C61.3855 (16)C11—H110.989 (16)
C1—H10.964 (17)C12—C131.3930 (18)
C2—C31.393 (2)C12—H120.979 (17)
C2—H20.962 (18)C13—C141.3899 (18)
C3—C41.382 (2)C14—C151.3803 (17)
C3—H30.960 (17)C14—H140.970 (16)
C4—C51.3907 (17)
C8—O2—H2A109.8 (13)O2—C8—C9111.24 (9)
C9—O3—H3A110.3 (15)C10—C8—C9101.15 (9)
C13—O4—H4A105.4 (14)C7—C8—C9103.73 (9)
C15—O5—C9107.37 (8)O3—C9—O5109.04 (9)
C2—C1—C6117.74 (12)O3—C9—C6111.66 (9)
C2—C1—H1119.7 (10)O5—C9—C6108.88 (9)
C6—C1—H1122.5 (10)O3—C9—C8114.73 (9)
C1—C2—C3121.46 (12)O5—C9—C8107.28 (9)
C1—C2—H2117.4 (10)C6—C9—C8105.01 (9)
C3—C2—H2121.1 (10)C11—C10—C15119.57 (11)
C4—C3—C2120.81 (12)C11—C10—C8131.39 (10)
C4—C3—H3119.4 (10)C15—C10—C8109.04 (10)
C2—C3—H3119.8 (10)C12—C11—C10119.08 (11)
C3—C4—C5117.86 (12)C12—C11—H11119.6 (9)
C3—C4—H4122.6 (9)C10—C11—H11121.3 (9)
C5—C4—H4119.5 (9)C11—C12—C13119.98 (11)
C6—C5—C4121.15 (11)C11—C12—H12121.8 (9)
C6—C5—C7109.97 (10)C13—C12—H12118.2 (9)
C4—C5—C7128.83 (11)O4—C13—C14121.03 (11)
C1—C6—C5120.97 (11)O4—C13—C12116.99 (11)
C1—C6—C9127.29 (11)C14—C13—C12121.97 (11)
C5—C6—C9111.73 (10)C15—C14—C13116.58 (11)
O1—C7—C5127.04 (11)C15—C14—H14121.9 (9)
O1—C7—C8124.56 (11)C13—C14—H14121.5 (9)
C5—C7—C8108.39 (9)O5—C15—C14123.43 (10)
O2—C8—C10117.01 (9)O5—C15—C10113.82 (10)
O2—C8—C7111.12 (9)C14—C15—C10122.74 (11)
C10—C8—C7111.37 (9)
C6—C1—C2—C30.49 (19)O2—C8—C9—O35.95 (14)
C1—C2—C3—C40.4 (2)C10—C8—C9—O3130.92 (10)
C2—C3—C4—C50.50 (19)C7—C8—C9—O3113.58 (10)
C3—C4—C5—C60.34 (18)O2—C8—C9—O5115.34 (10)
C3—C4—C5—C7177.34 (12)C10—C8—C9—O59.63 (11)
C2—C1—C6—C51.33 (18)C7—C8—C9—O5125.13 (9)
C2—C1—C6—C9179.74 (11)O2—C8—C9—C6128.92 (10)
C4—C5—C6—C11.28 (18)C10—C8—C9—C6106.11 (10)
C7—C5—C6—C1178.80 (10)C7—C8—C9—C69.39 (11)
C4—C5—C6—C9179.63 (10)O2—C8—C10—C1162.49 (17)
C7—C5—C6—C92.12 (13)C7—C8—C10—C1166.83 (15)
C6—C5—C7—O1170.36 (12)C9—C8—C10—C11176.52 (12)
C4—C5—C7—O16.9 (2)O2—C8—C10—C15116.84 (11)
C6—C5—C7—C88.49 (13)C7—C8—C10—C15113.83 (10)
C4—C5—C7—C8174.24 (11)C9—C8—C10—C154.14 (12)
O1—C7—C8—O248.37 (15)C15—C10—C11—C121.69 (17)
C5—C7—C8—O2130.52 (10)C8—C10—C11—C12179.04 (11)
O1—C7—C8—C1084.00 (14)C10—C11—C12—C130.81 (18)
C5—C7—C8—C1097.11 (10)C11—C12—C13—O4178.84 (11)
O1—C7—C8—C9167.98 (11)C11—C12—C13—C142.16 (18)
C5—C7—C8—C910.91 (11)O4—C13—C14—C15179.85 (11)
C15—O5—C9—O3136.72 (9)C12—C13—C14—C150.90 (18)
C15—O5—C9—C6101.24 (10)C9—O5—C15—C14170.98 (11)
C15—O5—C9—C811.91 (12)C9—O5—C15—C109.76 (13)
C1—C6—C9—O360.94 (15)C13—C14—C15—O5177.48 (10)
C5—C6—C9—O3120.05 (11)C13—C14—C15—C101.71 (17)
C1—C6—C9—O559.51 (15)C11—C10—C15—O5176.22 (10)
C5—C6—C9—O5119.51 (10)C8—C10—C15—O53.20 (13)
C1—C6—C9—C8174.14 (11)C11—C10—C15—C143.04 (18)
C5—C6—C9—C84.88 (12)C8—C10—C15—C14177.54 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.90 (2)2.02 (2)2.877 (1)158 (2)
O3—H3A···O4ii0.89 (2)2.18 (2)3.013 (1)157 (2)
O2—H2A···O1iii0.87 (2)1.92 (2)2.746 (1)159 (2)
O3—H3A···O20.89 (2)2.33 (2)2.667 (1)102 (1)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC15H10O5
Mr270.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)9.1117 (5), 12.2995 (7), 10.1177 (5)
β (°) 91.837 (1)
V3)1133.30 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.22 × 0.20 × 0.19
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12939, 2699, 2468
Rint0.020
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.05
No. of reflections2699
No. of parameters221
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O3i0.90 (2)2.02 (2)2.877 (1)158 (2)
O3—H3A···O4ii0.89 (2)2.18 (2)3.013 (1)157 (2)
O2—H2A···O1iii0.87 (2)1.92 (2)2.746 (1)159 (2)
O3—H3A···O20.89 (2)2.33 (2)2.667 (1)102 (1)
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
 

Acknowledgements

SS acknowledges the Department of Science and Technology (DST), India, for providing computing facilities under the DST-Fast Track Scheme.

References

First citationBao, L., Wang, M., Zhao, F., Zhao, Y. & Liu, H. (2010). Chem. Biodivers. 7, 2901–2907.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L. P., Zhao, F., Wang, Y., Zhao, L. L., Li, Q. P. & Liu, H. W. (2011). J. Asian. Nat. Prod. Res. 13, 734–743.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHansen, D. B. & Joullie, M. M. (2005). Chem. Soc. Rev. 34, 408–417.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLeane, M. M., Nankervis, R., Smith, A. & Illum, L. (2004). Int. J. Pharm. 271, 241–249.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZheng, Y. & Wu, F. E. (2007). J. Asian. Nat. Prod. Res. 9, 545–549.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1323
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds