inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dipotassium tris­­odium triphosphate, K2Na3P3O10

aLaboratoire de Physico-Chimie des Matériaux Inorganiques, Faculté des Sciences Aïn Chock, Casablanca, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m_lamire@yahoo.fr

(Received 3 April 2012; accepted 4 April 2012; online 18 April 2012)

The structure of the title compound, K2Na3P3O10, is characterized by open chains of three PO4 tetra­hedra linked by single oxygen bridges. The P3O10 groups have crystallographic twofold symmetry, with the central P atom being located on the twofold rotation axis. One of the sodium ions lies on a centre of inversion, whereas all the remaining atoms are in general positions. The structure is isotypic with that of the high-temperature form of Na5P3O10 phase I.

Related literature

For compounds with related structures, see: Cruickshank (1964[Cruickshank, D. W. J. (1964). Acta Cryst. 17, 674-675.]); Davies & Corbridge (1958[Davies, D. R. & Corbridge, D. E. C. (1958). Acta Cryst. 11, 315-319.]); Dyroff (1965[Dyroff, D. R. (1965). PhD thesis, California Institute of Technology, Pasadena, California, USA.]), Wiench et al. (1982[Wiench, D. M., Jansen, M. & Hoppe, R. (1982). Z. Anorg. Allg. Chem. 488, 80-86.]); Dymon & King (1951[Dymon, J. J. & King, A. J. (1951). Acta Cryst. 4, 378-379.]); Corbridge (1960[Corbridge, D. E. C. (1960). Acta Cryst. 13, 263-269.]).

Experimental

Crystal data
  • K2Na3P3O10

  • Mr = 400.08

  • Monoclinic, C 2/c

  • a = 9.8866 (4) Å

  • b = 5.6332 (2) Å

  • c = 18.6577 (8) Å

  • β = 96.199 (3)°

  • V = 1033.03 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 296 K

  • 0.19 × 0.14 × 0.10 mm

Data collection
  • Bruker APEXII CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1999[Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.]) Tmin = 0.511, Tmax = 0.638

  • 12463 measured reflections

  • 2830 independent reflections

  • 2136 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.080

  • S = 1.08

  • 2830 reflections

  • 85 parameters

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.97 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The present triphosphate was obtained by chance, during the preparation of a mixed pyrophosphate. A bibliographic study of alkali triphosphates like M5P3010 shows that there are few known structures. Thus, in the case of sodium triphosphate, the crystal structures of two anhydrous forms noted Phase I and II were determined by Cruickshank (1964) and Davies & Corbridge (1958) and that of the hexahydrate was performed by Dyroff (1965) and re-examined by Wiench et al. (1982).

The structure of dipotassium trisodium triphosphate consists of open chains of three PO4 tetrahedra linked by single oxygen bridges. The values of P–P (2.883 Å) distances and P—O—P (125.25°) angles are within the limits generally observed in condensed phosphate crystal chemistry. The internal symmetry of the P3010 groups has a twofold symmetry, with the central phosphorus P2 atom being located on a binary axis. Moreover, the Na2 sodium ion lies on the symmetry center whereas all the remaining atoms are in general positions of the C2/c space group. The Na2 sodium atom located at Wyckoff position 4c (1/4, 3/4, 1/2) could be surrounded by a roughly octahedral arrangement of six oxygen atoms and the other sodium and potassium (Na1, K1) atoms are coordinated to six and eight oxygen atoms respectively. The Na2O6 octahedra, Na1O6 and K1O8 polyhedra are connected through the apices to triphosphate groups and form a three-dimensional host lattice (Fig.1). The resulting 3-D framework presents intersecting tunnels running along the [010] and [110] directions, where the six-coordinated Na1+ cations are located (Fig.2). The structure of this compound is isotype to that of the high-temperature form of Na5P3010 phase I (Dymon and King, 1951 and Corbridge, 1960).

Related literature top

For compounds with related structures, see: Cruickshank (1964); Davies & Corbridge (1958); Dyroff (1965), Wiench et al. (1982); Dymon & King (1951); Corbridge (1960).

Experimental top

The present triphosphate is obtained by chance, during the preparation of a mixture of pyrophosphate. Indeed, the powder phase NaKNiP2O7 synthesized by wet process is introduced into a platinum crucible, and then gradually heated to a temperature above its melting point (1173 K) for 2 h, followed by slow cooling of the order of 6 K per hour up to 673 K. Then the furnace is shuts down and the cooling is continued until room temperature. Small colourless single crystals of K2Na3P3O10 were isolated from the mixtures of phases.

Refinement top

The highest peak and the deepest hole in the final Fourier map are at 0.63 Å and 0.58 Å, respectively, from K1.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Plot of K2Na3P3O10 crystal structure showing polyhedra linkage. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes:(i) -x + 1/2, -y + 1/2, -z + 1; (ii) -x, -y, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) x, y + 1, z; (v) -x, y, -z + 1/2; (vi) x - 1/2, y + 1/2, z; (vii) -x + 1/2, y + 1/2, -z + 1/2; (viii) x + 1/2, y - 1/2, z; (ix) x, y - 1, z; (x) -x + 1/2, -y - 1/2, -z + 1.
[Figure 2] Fig. 2. Projection view of the K2Na3P3O10 framework structure showing tunnel running along b direction where the Na1 atoms are located.
Dipotassium trisodium triphosphate top
Crystal data top
K2Na3P3O10F(000) = 784
Mr = 400.08Dx = 2.572 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -c 2ycCell parameters from 2830 reflections
a = 9.8866 (4) Åθ = 4.2–38.3°
b = 5.6332 (2) ŵ = 1.55 mm1
c = 18.6577 (8) ÅT = 296 K
β = 96.199 (3)°Block, colourless
V = 1033.03 (7) Å30.19 × 0.14 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD detector
diffractometer
2830 independent reflections
Radiation source: fine-focus sealed tube2136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω and ϕ scansθmax = 38.3°, θmin = 4.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
h = 1717
Tmin = 0.511, Tmax = 0.638k = 89
12463 measured reflectionsl = 3232
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0334P)2 + 0.7541P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.080(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.63 e Å3
2830 reflectionsΔρmin = 0.97 e Å3
85 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0011 (3)
Crystal data top
K2Na3P3O10V = 1033.03 (7) Å3
Mr = 400.08Z = 4
Monoclinic, C2/cMo Kα radiation
a = 9.8866 (4) ŵ = 1.55 mm1
b = 5.6332 (2) ÅT = 296 K
c = 18.6577 (8) Å0.19 × 0.14 × 0.10 mm
β = 96.199 (3)°
Data collection top
Bruker APEXII CCD detector
diffractometer
2830 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
2136 reflections with I > 2σ(I)
Tmin = 0.511, Tmax = 0.638Rint = 0.032
12463 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03285 parameters
wR(F2) = 0.0800 restraints
S = 1.08Δρmax = 0.63 e Å3
2830 reflectionsΔρmin = 0.97 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.09445 (3)0.27218 (6)0.57736 (2)0.02014 (8)
P10.06781 (3)0.22944 (6)0.398705 (18)0.00976 (7)
P20.00000.09573 (9)0.25000.01288 (10)
Na10.21820 (7)0.30829 (11)0.32759 (3)0.01917 (13)
Na20.25000.25000.50000.01344 (15)
O10.07276 (11)0.22433 (19)0.42318 (6)0.0184 (2)
O20.15106 (10)0.44080 (18)0.42676 (5)0.01569 (19)
O30.14234 (10)0.00428 (18)0.40638 (6)0.01571 (19)
O40.04508 (11)0.28577 (18)0.31142 (5)0.01663 (19)
O50.12023 (12)0.0419 (2)0.26927 (6)0.0231 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.01413 (13)0.01460 (13)0.03200 (18)0.00043 (10)0.00389 (11)0.00128 (11)
P10.00897 (13)0.00981 (14)0.01046 (14)0.00010 (10)0.00091 (10)0.00060 (10)
P20.0142 (2)0.0135 (2)0.0108 (2)0.0000.00129 (15)0.000
Na10.0199 (3)0.0173 (3)0.0212 (3)0.0060 (2)0.0062 (2)0.0047 (2)
Na20.0132 (3)0.0131 (4)0.0139 (3)0.0003 (3)0.0008 (3)0.0006 (3)
O10.0136 (4)0.0187 (5)0.0244 (5)0.0006 (4)0.0090 (4)0.0020 (4)
O20.0151 (4)0.0140 (4)0.0174 (4)0.0028 (3)0.0007 (3)0.0041 (3)
O30.0162 (4)0.0126 (4)0.0180 (4)0.0044 (3)0.0003 (3)0.0015 (3)
O40.0239 (5)0.0159 (4)0.0095 (4)0.0021 (4)0.0010 (3)0.0012 (3)
O50.0238 (5)0.0246 (5)0.0216 (5)0.0107 (4)0.0056 (4)0.0005 (4)
Geometric parameters (Å, º) top
K1—O2i2.7960 (11)P2—O41.5961 (11)
K1—O1ii2.8051 (11)P2—O4iv1.5961 (11)
K1—O3ii2.8291 (11)Na1—O5v2.4172 (14)
K1—O1iii2.8443 (11)Na1—O32.4278 (12)
K1—O3i2.8987 (11)Na1—O5iv2.4655 (13)
K1—O2iii2.9106 (11)Na1—O2vi2.4753 (12)
K1—O23.0740 (11)Na1—O1v2.5864 (13)
K1—O5ii3.1272 (12)Na1—O4vi2.8527 (13)
P1—O31.5080 (10)Na2—O2vi2.3599 (10)
P1—O21.5086 (10)Na2—O2i2.3599 (10)
P1—O11.5092 (11)Na2—O1ii2.3850 (10)
P1—O41.6506 (10)Na2—O1v2.3850 (10)
P2—O51.4951 (11)Na2—O32.3871 (10)
P2—O5iv1.4951 (11)Na2—O3vii2.3871 (10)
O2i—K1—O1ii68.95 (3)O3—P1—O4105.94 (6)
O2i—K1—O3ii122.11 (3)O2—P1—O4101.64 (6)
O1ii—K1—O3ii53.46 (3)O1—P1—O4105.69 (6)
O2i—K1—O1iii119.70 (3)O5—P2—O5iv117.54 (10)
O1ii—K1—O1iii171.32 (4)O5—P2—O4110.04 (6)
O3ii—K1—O1iii117.99 (3)O5iv—P2—O4110.66 (6)
O2i—K1—O3i52.85 (3)O5—P2—O4iv110.66 (6)
O1ii—K1—O3i121.17 (3)O5iv—P2—O4iv110.04 (6)
O3ii—K1—O3i166.73 (4)O4—P2—O4iv95.75 (8)
O1iii—K1—O3i67.49 (3)O5v—Na1—O3156.77 (5)
O2i—K1—O2iii171.11 (4)O5v—Na1—O5iv103.17 (3)
O1ii—K1—O2iii119.38 (3)O3—Na1—O5iv83.79 (4)
O3ii—K1—O2iii66.53 (3)O5v—Na1—O2vi105.62 (4)
O1iii—K1—O2iii51.95 (3)O3—Na1—O2vi79.92 (4)
O3i—K1—O2iii119.27 (3)O5iv—Na1—O2vi141.23 (5)
O2i—K1—O281.62 (3)O5v—Na1—O1v80.29 (4)
O1ii—K1—O2109.04 (3)O3—Na1—O1v78.96 (4)
O3ii—K1—O2119.82 (3)O5iv—Na1—O1v133.13 (5)
O1iii—K1—O273.13 (3)O2vi—Na1—O1v77.52 (4)
O3i—K1—O272.92 (3)O5v—Na1—O4vi86.22 (4)
O2iii—K1—O292.17 (3)O3—Na1—O4vi114.11 (4)
O2i—K1—O5ii82.10 (3)O5iv—Na1—O4vi103.10 (4)
O1ii—K1—O5ii65.69 (3)O2vi—Na1—O4vi54.20 (3)
O3ii—K1—O5ii70.56 (3)O1v—Na1—O4vi123.75 (4)
O1iii—K1—O5ii114.55 (3)O2vi—Na2—O2i180.0
O3i—K1—O5ii96.19 (3)O2vi—Na2—O1ii96.16 (4)
O2iii—K1—O5ii103.88 (3)O2i—Na2—O1ii83.85 (4)
O2—K1—O5ii163.68 (3)O2vi—Na2—O1v83.85 (4)
O2i—K1—O1108.73 (3)O2i—Na2—O1v96.15 (4)
O1ii—K1—O183.10 (3)O1ii—Na2—O1v180.000 (1)
O3ii—K1—O172.27 (3)O2vi—Na2—O383.11 (3)
O1iii—K1—O192.86 (3)O2i—Na2—O396.89 (3)
O3i—K1—O1120.50 (3)O1ii—Na2—O396.09 (4)
O2iii—K1—O170.83 (3)O1v—Na2—O383.91 (4)
O2—K1—O147.59 (3)O2vi—Na2—O3vii96.89 (3)
O5ii—K1—O1141.07 (3)O2i—Na2—O3vii83.11 (3)
O3—P1—O2114.42 (6)O1ii—Na2—O3vii83.91 (4)
O3—P1—O1114.27 (6)O1v—Na2—O3vii96.09 (4)
O2—P1—O1113.31 (6)O3—Na2—O3vii180.00 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1; (iii) x, y+1, z+1; (iv) x, y, z+1/2; (v) x+1/2, y1/2, z; (vi) x, y1, z; (vii) x+1/2, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaK2Na3P3O10
Mr400.08
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)9.8866 (4), 5.6332 (2), 18.6577 (8)
β (°) 96.199 (3)
V3)1033.03 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.55
Crystal size (mm)0.19 × 0.14 × 0.10
Data collection
DiffractometerBruker APEXII CCD detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1999)
Tmin, Tmax0.511, 0.638
No. of measured, independent and
observed [I > 2σ(I)] reflections
12463, 2830, 2136
Rint0.032
(sin θ/λ)max1)0.872
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.080, 1.08
No. of reflections2830
No. of parameters85
Δρmax, Δρmin (e Å3)0.63, 0.97

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCorbridge, D. E. C. (1960). Acta Cryst. 13, 263–269.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCruickshank, D. W. J. (1964). Acta Cryst. 17, 674–675.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDavies, D. R. & Corbridge, D. E. C. (1958). Acta Cryst. 11, 315–319.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDymon, J. J. & King, A. J. (1951). Acta Cryst. 4, 378–379.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationDyroff, D. R. (1965). PhD thesis, California Institute of Technology, Pasadena, California, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWiench, D. M., Jansen, M. & Hoppe, R. (1982). Z. Anorg. Allg. Chem. 488, 80–86.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds