metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[(2-amino­pyrimidine-κN1)(thio­cyanato-κS)mercury(II)]-μ-thio­cyanato-κ2S:N]

aTechnical and Vocational University, Ozgoli Square, Lavizan, Tehran, Iran, and bDepartment of Chemistry, Islamic Azad University, Omidieh Branch, Omidieh, Iran
*Correspondence e-mail: sadif_shirvan1@yahoo.com

(Received 8 April 2012; accepted 17 April 2012; online 21 April 2012)

In the title coordination polymer, [Hg(NCS)2(C4H5N3)], the HgII atom is four-coordinated by one aromatic N atom from a 2-amino­pyrimidine ligand, one S atom from a terminal thio­cyanate ligand, and one S atom and one N atom from a bridging thio­cyanate ligand. The crystal structure features polymeric chains running along the b axis which are stabilized by N—H⋯N hydrogen bonds.

Related literature

For related structures with amino­pyridine as a ligand, see: Albada et al. (2002[Albada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2002). Acta Cryst. E58, m55-m57.]); Castillo et al. (2011[Castillo, A. S., Calahorro, A. J., Lazarte, D. C., Seco, J. M. & Dieguez, A. R. (2011). Polyhedron, 30, 1295-1298.]); Cheng et al. (2009[Cheng, X.-L., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, m1634.]); Cui et al. (2011[Cui, L. N., Hu, K. Y., Jin, Q. H., Li, Z. F., Wu, J. Q. & Zhang, C. L. (2011). Polyhedron, 30, 2253-2259.]); Gao & Ng (2010[Gao, S. & Ng, S. W. (2010). Acta Cryst. E66, m1279.]); Lee et al. (2003[Lee, J. H. P., Lewis, B. D., Mendes, J. M., Turnbull, M. M. & Awwadi, F. F. (2003). J. Coord. Chem. 56, 1425-1442.]); Li et al. (2006[Li, Y., Zhang, X.-Q., Zhang, X.-C., Wang, X.-J. & Fang, R.-Q. (2006). Acta Cryst. E62, m1159-m1161.]); Lin & Zeng (2007[Lin, Z.-D. & Zeng, W. (2007). Acta Cryst. E63, m1597.]); Masaki et al. (2002[Masaki, M. E., Prince, B. J. & Turnbull, M. M. (2002). J. Coord. Chem. 55, 1337-1351.]); Qu et al. (2008[Qu, Y., Zhang, S. M., Wu, X. Z., Zhang, H. & Lin, Z. D. (2008). Acta Cryst. E64, m732.]); Zhu et al. (2002[Zhu, H. L., Ren, C. X. & Chen, X. M. (2002). J. Coord. Chem. 55, 667-673.], 2003[Zhu, H.-L., Yang, S., Ma, J.-L., Qiu, X.-Y., Sun, L. & Shao, S.-C. (2003). Acta Cryst. E59, m1046-m1047.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg(NCS)2(C4H5N3)]

  • Mr = 411.88

  • Monoclinic, C 2/c

  • a = 25.819 (2) Å

  • b = 6.0060 (4) Å

  • c = 20.1176 (15) Å

  • β = 136.222 (4)°

  • V = 2158.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 14.62 mm−1

  • T = 298 K

  • 0.25 × 0.22 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.039, Tmax = 0.222

  • 7675 measured reflections

  • 2131 independent reflections

  • 1671 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.088

  • S = 1.10

  • 2131 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.72 e Å−3

  • Δρmin = −1.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯N5i 0.86 2.21 3.052 (14) 167
N1—H1B⋯N3ii 0.86 2.15 3.004 (13) 176
Symmetry codes: (i) x, y+1, z; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Numerous complexes with 2-aminopyrimidine as a ligand have been prepared, such as that of cobalt (Li et al., 2006), manganese (Lee et al., 2003), nickel (Masaki et al., 2002), zinc (Gao et al., 2010; Qu et al., 2008; Lin & Zeng, 2007), cadmium (Castillo et al., 2011; Cheng et al., 2009), silver (Zhu et al., 2003; Cui et al., 2011) and copper (Zhu et al., 2002; Albada et al., 2002). Here, we report the synthesis and structure of the title compound.

In the title coordination polymer, (Fig. 1), the HgII atom is four-coordinated in a butterfly configuration by one N atom from one 2-aminopyrimidine, one S atom from one terminal SCN ligand, one S atom from one bridging SCN and one N atom from one bridging SCN ligand.

In the crystal structure, intermolecular N—H···N hydrogen bonds (Table 2, Fig. 2) stabilize the structure.

Related literature top

For related structures with aminopyridine as a ligand, see: Albada et al. (2002); Castillo et al. (2011); Cheng et al. (2009); Cui et al. (2011); Gao & Ng (2010); Lee et al. (2003); Li et al. (2006); Lin et al. (2007); Masaki et al. (2002); Qu et al. (2008); Zhu et al. (2002, 2003).

Experimental top

A solution of 2-aminopyrimidine (0.19 g, 2.0 mmol) in methanol (20 ml) was added to a solution of Hg(SCN)2 (0.43 g, 1.0 mmol) in methanol (20 ml) and the resulting colorless solution was stirred for 20 min at 313 K. This solution was left to evaporate slowly at room temperature. After one week, colourless prismatic crystals of the title compound were isolated (yield; 0.33 g, 72.8%).

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 Å and N—H = 0.86 Å and constrained to ride on their parent atoms with Uiso(H)=1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) x,-1 + y,z].
[Figure 2] Fig. 2. Unit-cell packing diagram for title molecule. Hydrogen bonds are shown as dashed lines.
catena-Poly[[(2-aminopyrimidine-κN1)(thiocyanato- κS)mercury(II)]-µ-thiocyanato-κ2S:N] top
Crystal data top
[Hg(NCS)2(C4H5N3)]F(000) = 1504
Mr = 411.88Dx = 2.535 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7675 reflections
a = 25.819 (2) Åθ = 2.9–26.0°
b = 6.0060 (4) ŵ = 14.62 mm1
c = 20.1176 (15) ÅT = 298 K
β = 136.222 (4)°Prism, colorless
V = 2158.4 (3) Å30.25 × 0.22 × 0.11 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2131 independent reflections
Radiation source: fine-focus sealed tube1671 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: numerical
(SADABS; Bruker, 2001)
h = 3127
Tmin = 0.039, Tmax = 0.222k = 77
7675 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0349P)2]
where P = (Fo2 + 2Fc2)/3
2131 reflections(Δ/σ)max = 0.008
127 parametersΔρmax = 0.72 e Å3
0 restraintsΔρmin = 1.23 e Å3
Crystal data top
[Hg(NCS)2(C4H5N3)]V = 2158.4 (3) Å3
Mr = 411.88Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.819 (2) ŵ = 14.62 mm1
b = 6.0060 (4) ÅT = 298 K
c = 20.1176 (15) Å0.25 × 0.22 × 0.11 mm
β = 136.222 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2131 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2001)
1671 reflections with I > 2σ(I)
Tmin = 0.039, Tmax = 0.222Rint = 0.078
7675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.10Δρmax = 0.72 e Å3
2131 reflectionsΔρmin = 1.23 e Å3
127 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.16617 (2)0.10942 (6)0.33894 (3)0.05561 (16)
S10.1305 (2)0.3052 (4)0.4049 (2)0.0707 (8)
S20.25302 (16)0.0298 (4)0.3378 (2)0.0641 (7)
C10.0285 (5)0.2478 (15)0.1021 (6)0.049 (2)
C20.0007 (6)0.0719 (16)0.1318 (7)0.055 (2)
H20.01260.17800.17490.067*
C30.0648 (5)0.0935 (19)0.0381 (7)0.058 (3)
H30.09610.21520.01530.069*
C40.0821 (5)0.0738 (17)0.0211 (7)0.054 (3)
H40.12780.06750.08550.065*
C50.1323 (6)0.5655 (15)0.3790 (8)0.055 (3)
C60.2379 (5)0.3009 (18)0.3346 (6)0.047 (2)
N10.0752 (5)0.4154 (14)0.1322 (6)0.073 (3)
H1A0.11760.42340.19160.088*
H1B0.06290.51550.09230.088*
N20.0491 (4)0.0940 (11)0.1659 (5)0.0437 (16)
N30.0368 (4)0.2472 (13)0.0082 (5)0.051 (2)
N40.1294 (7)0.7461 (14)0.3608 (9)0.090 (4)
N50.2301 (5)0.4879 (17)0.3329 (7)0.070 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0759 (3)0.03563 (19)0.0604 (2)0.0129 (2)0.0510 (2)0.0059 (2)
S10.123 (3)0.0400 (12)0.097 (2)0.0033 (15)0.096 (2)0.0014 (14)
S20.0652 (17)0.0482 (13)0.0875 (19)0.0009 (13)0.0581 (16)0.0002 (13)
C10.047 (5)0.049 (5)0.041 (5)0.004 (4)0.029 (5)0.001 (4)
C20.062 (6)0.050 (6)0.063 (6)0.005 (5)0.048 (6)0.002 (5)
C30.047 (5)0.073 (7)0.058 (6)0.013 (5)0.039 (5)0.005 (6)
C40.039 (5)0.072 (7)0.045 (5)0.006 (5)0.028 (4)0.004 (5)
C50.080 (7)0.045 (6)0.074 (7)0.010 (5)0.067 (6)0.013 (5)
C60.033 (5)0.050 (5)0.049 (5)0.001 (4)0.026 (5)0.005 (4)
N10.062 (5)0.058 (5)0.043 (4)0.017 (4)0.018 (4)0.007 (4)
N20.047 (4)0.036 (4)0.042 (4)0.004 (3)0.030 (3)0.006 (3)
N30.037 (4)0.062 (5)0.042 (4)0.007 (4)0.024 (4)0.005 (4)
N40.163 (11)0.036 (5)0.164 (11)0.016 (6)0.148 (10)0.014 (6)
N50.063 (6)0.051 (5)0.089 (7)0.004 (5)0.053 (6)0.016 (5)
Geometric parameters (Å, º) top
Hg1—S12.399 (5)N3—C41.343 (16)
Hg1—S22.409 (5)N4—C51.130 (13)
Hg1—N22.464 (7)N5—C61.137 (15)
Hg1—N4i2.542 (13)N1—H1B0.8600
S1—C51.659 (11)N1—H1A0.8600
S2—C61.665 (11)C2—C31.352 (15)
N1—C11.334 (16)C3—C41.364 (16)
N2—C11.341 (12)C2—H20.9300
N2—C21.337 (16)C3—H30.9300
N3—C11.346 (12)C4—H40.9300
Hg1···N5ii2.980 (13)C2···S1iii3.679 (16)
Hg1···H1A2.9200C3···S1iii3.569 (15)
S1···N4i3.468 (10)C4···S1iii3.630 (15)
S1···C2iii3.679 (16)C4···N5vii3.44 (2)
S1···C3iii3.569 (15)C4···C1vi3.400 (19)
S1···C4iii3.630 (15)C5···C6ii3.52 (2)
S2···N5ii3.297 (11)C5···N5ii3.27 (2)
S2···H3iv3.1900C6···C5i3.52 (2)
N1···N5ii3.052 (14)C1···H1Bv3.0900
N1···N3v3.004 (13)C4···H1Bv3.0700
N3···N1v3.004 (13)C6···H1Ai2.7900
N4···C6ii3.22 (3)C6···H3iv3.0200
N4···S1ii3.468 (10)C6···H4iv3.0200
N4···C2ii3.370 (16)H1A···Hg12.9200
N5···N1i3.052 (14)H1A···N5ii2.2100
N5···C4iv3.44 (2)H1A···C6ii2.7900
N5···Hg1i2.980 (13)H1B···N3v2.1500
N5···S2i3.297 (11)H1B···C1v3.0900
N5···C5i3.27 (2)H1B···C4v3.0700
N3···H1Bv2.1500H2···N4i2.6500
N4···H2ii2.6500H3···S2vii3.1900
N5···H1Ai2.2100H3···C6vii3.0200
N5···H4iv2.7700H4···N5vii2.7700
C1···C4vi3.400 (19)H4···C6vii3.0200
S1—Hg1—S2155.11 (12)C1—N1—H1B120.00
S1—Hg1—N2103.3 (3)N1—C1—N2118.8 (8)
S1—Hg1—N4i89.1 (4)N1—C1—N3116.4 (9)
S2—Hg1—N2100.0 (3)N2—C1—N3124.8 (10)
S2—Hg1—N4i99.8 (5)N2—C2—C3123.5 (10)
N2—Hg1—N4i89.0 (4)C2—C3—C4116.0 (11)
Hg1—S1—C5100.3 (6)N3—C4—C3123.8 (10)
Hg1—S2—C698.4 (6)S1—C5—N4175 (2)
Hg1—N2—C1124.1 (7)S2—C6—N5177.0 (15)
Hg1—N2—C2119.5 (6)N2—C2—H2118.00
C1—N2—C2116.4 (8)C3—C2—H2118.00
C1—N3—C4115.4 (9)C2—C3—H3122.00
Hg1ii—N4—C5159.2 (18)C4—C3—H3122.00
H1A—N1—H1B120.00N3—C4—H4118.00
C1—N1—H1A120.00C3—C4—H4118.00
S2—Hg1—S1—C579.5 (5)S2—Hg1—N4i—C5i18 (3)
N2—Hg1—S1—C580.0 (5)N2—Hg1—N4i—C5i118 (3)
N4i—Hg1—S1—C5168.8 (6)Hg1—N2—C1—N13.2 (18)
S1—Hg1—S2—C6118.0 (4)C2—N2—C1—N1179.2 (13)
N2—Hg1—S2—C682.3 (4)Hg1—N2—C1—N3176.8 (10)
N4i—Hg1—S2—C68.4 (4)C2—N2—C1—N31 (2)
S1—Hg1—N2—C191.2 (11)C1—N2—C2—C32 (2)
S1—Hg1—N2—C286.3 (10)Hg1—N2—C2—C3180.0 (12)
S2—Hg1—N2—C180.2 (10)C4—N3—C1—N22 (2)
S2—Hg1—N2—C2102.3 (11)C4—N3—C1—N1178.3 (13)
N4i—Hg1—N2—C1179.9 (11)C1—N3—C4—C30 (2)
N4i—Hg1—N2—C22.5 (11)N2—C2—C3—C44 (2)
S1—Hg1—N4i—C5i139 (3)C2—C3—C4—N33 (2)
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x, y, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x, y+1, z; (vi) x, y, z; (vii) x1/2, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N5ii0.862.213.052 (14)167
N1—H1B···N3v0.862.153.004 (13)176
Symmetry codes: (ii) x, y+1, z; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Hg(NCS)2(C4H5N3)]
Mr411.88
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)25.819 (2), 6.0060 (4), 20.1176 (15)
β (°) 136.222 (4)
V3)2158.4 (3)
Z8
Radiation typeMo Kα
µ (mm1)14.62
Crystal size (mm)0.25 × 0.22 × 0.11
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2001)
Tmin, Tmax0.039, 0.222
No. of measured, independent and
observed [I > 2σ(I)] reflections
7675, 2131, 1671
Rint0.078
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.088, 1.10
No. of reflections2131
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 1.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N5i0.86002.21003.052 (14)167.00
N1—H1B···N3ii0.86002.15003.004 (13)176.00
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z.
 

Acknowledgements

We are grateful to the Technical and Vocational University and the Islamic Azad University, Omidieh Branch for financial support.

References

First citationAlbada, G. A., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2002). Acta Cryst. E58, m55–m57.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCastillo, A. S., Calahorro, A. J., Lazarte, D. C., Seco, J. M. & Dieguez, A. R. (2011). Polyhedron, 30, 1295–1298.  Google Scholar
First citationCheng, X.-L., Gao, S. & Ng, S. W. (2009). Acta Cryst. E65, m1634.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCui, L. N., Hu, K. Y., Jin, Q. H., Li, Z. F., Wu, J. Q. & Zhang, C. L. (2011). Polyhedron, 30, 2253–2259.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGao, S. & Ng, S. W. (2010). Acta Cryst. E66, m1279.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLee, J. H. P., Lewis, B. D., Mendes, J. M., Turnbull, M. M. & Awwadi, F. F. (2003). J. Coord. Chem. 56, 1425–1442.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, Y., Zhang, X.-Q., Zhang, X.-C., Wang, X.-J. & Fang, R.-Q. (2006). Acta Cryst. E62, m1159–m1161.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLin, Z.-D. & Zeng, W. (2007). Acta Cryst. E63, m1597.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMasaki, M. E., Prince, B. J. & Turnbull, M. M. (2002). J. Coord. Chem. 55, 1337–1351.  Web of Science CSD CrossRef CAS Google Scholar
First citationQu, Y., Zhang, S. M., Wu, X. Z., Zhang, H. & Lin, Z. D. (2008). Acta Cryst. E64, m732.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhu, H. L., Ren, C. X. & Chen, X. M. (2002). J. Coord. Chem. 55, 667–673.  CSD CrossRef CAS Google Scholar
First citationZhu, H.-L., Yang, S., Ma, J.-L., Qiu, X.-Y., Sun, L. & Shao, S.-C. (2003). Acta Cryst. E59, m1046–m1047.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds