organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1563-o1564

Methyl (2E)-2-({2-[(2E)-2-benzyl­­idene-3-meth­­oxy-3-oxoprop­yl]-1,3-dioxoindan-2-yl}meth­yl)-3-phenyl­prop-2-enoate

aDepartment of Physics, C. Abdul Hakeem College of Engineering & Technology, Melvisharam, Vellore 632 509, India, bDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India, and cDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 8 April 2012; accepted 22 April 2012; online 28 April 2012)

In the title compound, C31H26O6, the five-membered ring of the indane unit adopts a slight envelope conformation with the flap atom displaced by 1.38 (14) Å. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(9) ring motif. In the crystal, pairs of C—H⋯O hydrogen bonds link centrosymmetrically related mol­ecules into dimers, generating R22(22) ring motifs. The crystal packing is further stabilized by C—H⋯π inter­actions.

Related literature

Indene ring systems are present in a large number of biologi­cally active compounds, and their metallocene complexes are able to catalyse olefin polymerization, see: Rayabarapu et al. (2003[Rayabarapu, D. K., Yang, C. H. & Cheng, C. H. (2003). J. Org. Chem. 68, 6726-6731.]); Senanayake et al. (1995[Senanayake, C. H., Roberts, F. E., DiMichele, L. M., Ryan, K. M., Liu, J., Fredenburgh, L. E., Foster, B. S., Douglas, A. W., Larsen, R. D., Verhoeven, T. R. & Reider, P. J. (1995). Tetrahedron Lett. 36, 3993-3996.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C31H26O6

  • Mr = 494.52

  • Triclinic, [P \overline 1]

  • a = 10.5657 (4) Å

  • b = 10.9275 (5) Å

  • c = 11.8961 (5) Å

  • α = 71.250 (2)°

  • β = 77.889 (3)°

  • γ = 76.656 (2)°

  • V = 1251.70 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.978, Tmax = 0.985

  • 25995 measured reflections

  • 6921 independent reflections

  • 5016 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.128

  • S = 1.04

  • 6921 reflections

  • 337 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C13–C18 and C24–C29 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1 0.93 2.40 3.288 (2) 161
C27—H27⋯O2i 0.93 2.46 3.207 (2) 137
C31—H31CCg1ii 0.96 2.87 3.554 (2) 129
C20—H20BCg2iii 0.96 2.86 3.500 (2) 125
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x, -y+1, -z; (iii) -x, -y, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indene ring frameworks are present in a large number of biologically active compounds, and their metallocene complexes are able to catalyze olefin polymerization (Senanayake et al., 1995; Rayabarapu et al., 2003). Some derivatives have shown analgesic and myorelaxation activity, and others are used as valuable intermediates for the synthesis of indenyl chrysanthemates that possess insecticidal properties. So in the recent three decades, many chemists have been attracted by the synthesis of indenes. In view of this biological importance, the crystal structure of the title compound has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The cyclopentane (C1/C2/C3/C8/C9) ring adopts an envelope conformation with the C1 [displacement = 1.38 (14) Å] atom as the flap atom and with puckering parameters (Cremer & Pople, 1975), q2 = 0.1418 (13) Å and ϕ2 = 184.2 (6)°. The indene (C1–C9) moeity forms dihedral angles of 50.0 (1)° and 22.7 (1)° respectively, with the C13–C18 and C24–C29 benzene rings. The dihedral angle between two benzene rings is 65.0 (1)°.

The molecular structure is stabilized by C14—H14···O1 intramolecular hydrogen bond, forming S(9) ring motif (Bernstein et al., 1995) (Table 1). In the crystal packing (Fig. 2), the molecules at x, y, z and 1 - x,-y,1 - z are linked by C27—H27··· O2 hydrogen bonds into cyclic centrosymmetric R22(22) dimers. The crystal packing is further stabilized by two C—H···π interactions, the first one between a methyl H31C atom and neighbouring benene ring (C13–C18), with a C31—H31C···Cg1ii seperation of 2.87 Å (Fig. 3 and Table 1; Cg1 is the centroid of the C13–C18 benzene ring, Symmetry code as in Fig.3), and the second one between another methyl H20B atom and neighbouring benzene ring (C24–C29), with a C20—H20B···Cg2iii seperation of 2.86 Å (Fig. 3 and Table 1; Cg2 is the centroid of the C24–C29 benzene ring, Symmetry code as in Fig.3).

Related literature top

Indene ring frameworks are present in a large number of biologically activecompounds, and their metallocene complexes are able to catalyse olefin polymerization, see: Rayabarapu et al. (2003); Senanayake et al. (1995). For ring puckering analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

To a stirred solution of 2,3-dihydro-1H-indene-1,3-dione (1 mmol, 0.146 g) and potassium carbonate (2.5 mmol, 0.345 g) was stirred for 15 minutes in acetonitrile as solvent at room temperature. To this solution, methyl (2Z)-2-(bromomethyl) -3-phenylprop-2-enoate (2 mmol, 0.510 g) was added till the addition is complete. After the completion of the reaction as indicated by TLC, acetonitrile solvent was evaporated. Ethylacetate (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product. The pure title compound was obtained as a colorless solid (0.475 g, 96% yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atom, with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 10% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing C—H···O intermolecular hydrogen bonds (dotted lines) generating R22(22) centrosymmetric dimer. [Symmetry code: (i) 1 - x, -y, 1 - z].
[Figure 3] Fig. 3. A view of the C—H···π interactions (dotted lines) in the crystal structure of the title compound. Cg1 and Cg2 denotes centroids of the C13–C18 benzene ring and C24–C29 benzene ring, respectively. [Symmetry codes: (ii) -x, 1 - y, -z; (iii) -x, -y, 1 - z].
Methyl (2E)-2-({2-[(2E)-2-benzylidene-3-methoxy-3-oxopropyl]-1,3-dioxoindan-2-yl}methyl)-3-phenylprop-2-enoate top
Crystal data top
C31H26O6Z = 2
Mr = 494.52F(000) = 520
Triclinic, P1Dx = 1.312 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5657 (4) ÅCell parameters from 7169 reflections
b = 10.9275 (5) Åθ = 2.0–29.8°
c = 11.8961 (5) ŵ = 0.09 mm1
α = 71.250 (2)°T = 293 K
β = 77.889 (3)°Block, colourless
γ = 76.656 (2)°0.25 × 0.23 × 0.17 mm
V = 1251.70 (9) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6921 independent reflections
Radiation source: fine-focus sealed tube5016 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 29.8°, θmin = 2.0°
ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1515
Tmin = 0.978, Tmax = 0.985l = 1216
25995 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.201P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
6921 reflectionsΔρmax = 0.28 e Å3
337 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0071 (18)
Crystal data top
C31H26O6γ = 76.656 (2)°
Mr = 494.52V = 1251.70 (9) Å3
Triclinic, P1Z = 2
a = 10.5657 (4) ÅMo Kα radiation
b = 10.9275 (5) ŵ = 0.09 mm1
c = 11.8961 (5) ÅT = 293 K
α = 71.250 (2)°0.25 × 0.23 × 0.17 mm
β = 77.889 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
6921 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5016 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.985Rint = 0.028
25995 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
6921 reflectionsΔρmin = 0.18 e Å3
337 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.25024 (11)0.03216 (11)0.19693 (10)0.0334 (2)
C20.29043 (12)0.11776 (12)0.22493 (11)0.0379 (3)
C30.27268 (11)0.15476 (12)0.12061 (11)0.0357 (3)
C40.31247 (13)0.27427 (13)0.09515 (13)0.0441 (3)
H40.35780.34630.14680.053*
C50.28266 (14)0.28279 (15)0.00914 (14)0.0508 (4)
H50.30970.36160.02880.061*
C60.21335 (15)0.17655 (16)0.08524 (14)0.0525 (4)
H60.19290.18570.15410.063*
C70.17414 (13)0.05732 (14)0.06069 (12)0.0455 (3)
H70.12770.01420.11200.055*
C80.20613 (11)0.04741 (12)0.04293 (11)0.0352 (3)
C90.17798 (11)0.06785 (11)0.08894 (10)0.0335 (2)
C100.17153 (12)0.08121 (12)0.30306 (11)0.0364 (3)
H10A0.20620.02350.37490.044*
H10B0.19090.16730.29160.044*
C110.02411 (12)0.09234 (11)0.32861 (10)0.0344 (2)
C120.05926 (13)0.20136 (12)0.33956 (12)0.0395 (3)
H120.14600.19180.37060.047*
C130.03082 (12)0.33552 (12)0.30845 (12)0.0404 (3)
C140.02253 (14)0.39710 (14)0.19283 (14)0.0496 (3)
H140.04920.35040.13640.060*
C150.03664 (16)0.52755 (15)0.16017 (17)0.0594 (4)
H150.06990.56860.08150.071*
C160.00162 (16)0.59609 (15)0.24355 (18)0.0610 (4)
H160.01230.68320.22210.073*
C170.04925 (17)0.53541 (15)0.35889 (17)0.0610 (4)
H170.07140.58140.41580.073*
C180.06809 (16)0.40642 (14)0.39177 (14)0.0517 (3)
H180.10560.36750.46950.062*
C190.02906 (13)0.02882 (12)0.34965 (11)0.0389 (3)
C200.21535 (18)0.13120 (16)0.41099 (18)0.0694 (5)
H20A0.21020.14960.33630.104*
H20B0.30580.11470.44600.104*
H20C0.16880.20520.46480.104*
C210.38551 (12)0.08067 (12)0.16164 (12)0.0387 (3)
H21A0.42510.05910.23370.046*
H21B0.44340.03300.10890.046*
C220.37728 (11)0.22488 (13)0.10063 (11)0.0379 (3)
C230.38335 (13)0.31646 (13)0.15049 (12)0.0411 (3)
H230.36730.40220.10130.049*
C240.41114 (12)0.30482 (12)0.27018 (12)0.0392 (3)
C250.51220 (13)0.21207 (14)0.32403 (13)0.0459 (3)
H250.55910.14780.28810.055*
C260.54314 (14)0.21504 (16)0.43022 (14)0.0529 (4)
H260.61090.15280.46500.063*
C270.47525 (16)0.30853 (17)0.48491 (14)0.0569 (4)
H270.49710.31020.55610.068*
C280.37445 (16)0.39995 (16)0.43375 (14)0.0549 (4)
H280.32750.46320.47090.066*
C290.34272 (14)0.39827 (13)0.32762 (13)0.0463 (3)
H290.27440.46070.29390.056*
C300.36793 (13)0.26335 (14)0.02990 (12)0.0437 (3)
C310.3415 (2)0.4347 (2)0.20839 (15)0.0730 (5)
H31A0.42470.40200.24890.110*
H31B0.32430.52890.23640.110*
H31C0.27320.40100.22470.110*
O10.10725 (9)0.17082 (9)0.05059 (8)0.0454 (2)
O20.33508 (11)0.18975 (10)0.31315 (9)0.0565 (3)
O30.15730 (10)0.01759 (9)0.38974 (10)0.0549 (3)
O40.03542 (11)0.12708 (10)0.32961 (12)0.0659 (3)
O50.34473 (12)0.39300 (10)0.08061 (9)0.0581 (3)
O60.38424 (11)0.18503 (11)0.08508 (9)0.0588 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0328 (5)0.0355 (6)0.0339 (6)0.0033 (4)0.0080 (5)0.0124 (5)
C20.0363 (6)0.0370 (6)0.0400 (7)0.0031 (5)0.0089 (5)0.0107 (5)
C30.0314 (5)0.0373 (6)0.0389 (6)0.0072 (5)0.0020 (5)0.0129 (5)
C40.0413 (7)0.0373 (6)0.0543 (8)0.0094 (5)0.0011 (6)0.0160 (6)
C50.0496 (8)0.0499 (8)0.0620 (9)0.0160 (6)0.0051 (7)0.0316 (7)
C60.0507 (8)0.0688 (10)0.0513 (8)0.0167 (7)0.0036 (6)0.0337 (8)
C70.0428 (7)0.0575 (8)0.0408 (7)0.0080 (6)0.0090 (6)0.0192 (6)
C80.0314 (6)0.0405 (6)0.0357 (6)0.0072 (5)0.0033 (5)0.0141 (5)
C90.0301 (5)0.0375 (6)0.0323 (6)0.0052 (4)0.0038 (4)0.0101 (5)
C100.0394 (6)0.0395 (6)0.0335 (6)0.0062 (5)0.0070 (5)0.0142 (5)
C110.0402 (6)0.0346 (6)0.0295 (6)0.0086 (5)0.0023 (5)0.0109 (5)
C120.0383 (6)0.0384 (6)0.0428 (7)0.0099 (5)0.0010 (5)0.0153 (5)
C130.0372 (6)0.0356 (6)0.0507 (7)0.0030 (5)0.0072 (5)0.0174 (6)
C140.0503 (8)0.0433 (7)0.0570 (9)0.0119 (6)0.0022 (6)0.0205 (6)
C150.0567 (9)0.0449 (8)0.0729 (11)0.0169 (7)0.0007 (8)0.0130 (7)
C160.0551 (9)0.0371 (7)0.0962 (13)0.0076 (6)0.0189 (9)0.0217 (8)
C170.0724 (10)0.0440 (8)0.0787 (12)0.0041 (7)0.0265 (9)0.0344 (8)
C180.0603 (9)0.0432 (7)0.0536 (8)0.0021 (6)0.0142 (7)0.0207 (6)
C190.0453 (7)0.0360 (6)0.0339 (6)0.0095 (5)0.0016 (5)0.0111 (5)
C200.0665 (10)0.0526 (9)0.0910 (13)0.0333 (8)0.0190 (9)0.0265 (9)
C210.0317 (6)0.0418 (6)0.0442 (7)0.0032 (5)0.0073 (5)0.0155 (5)
C220.0298 (5)0.0454 (7)0.0386 (6)0.0076 (5)0.0044 (5)0.0118 (5)
C230.0407 (6)0.0418 (7)0.0405 (7)0.0106 (5)0.0073 (5)0.0085 (5)
C240.0365 (6)0.0425 (7)0.0405 (7)0.0140 (5)0.0049 (5)0.0100 (5)
C250.0363 (6)0.0542 (8)0.0496 (8)0.0072 (6)0.0054 (6)0.0192 (6)
C260.0405 (7)0.0676 (9)0.0510 (8)0.0086 (6)0.0135 (6)0.0139 (7)
C270.0559 (9)0.0772 (11)0.0461 (8)0.0196 (8)0.0102 (7)0.0223 (8)
C280.0583 (9)0.0600 (9)0.0536 (9)0.0114 (7)0.0029 (7)0.0286 (7)
C290.0455 (7)0.0440 (7)0.0509 (8)0.0093 (6)0.0072 (6)0.0144 (6)
C300.0355 (6)0.0536 (8)0.0428 (7)0.0125 (5)0.0025 (5)0.0135 (6)
C310.0816 (12)0.0871 (13)0.0457 (9)0.0209 (10)0.0202 (8)0.0016 (9)
O10.0458 (5)0.0430 (5)0.0455 (5)0.0049 (4)0.0157 (4)0.0133 (4)
O20.0703 (7)0.0465 (6)0.0492 (6)0.0059 (5)0.0277 (5)0.0085 (5)
O30.0466 (5)0.0408 (5)0.0757 (7)0.0176 (4)0.0115 (5)0.0207 (5)
O40.0585 (6)0.0452 (6)0.0961 (9)0.0152 (5)0.0167 (6)0.0367 (6)
O50.0748 (7)0.0553 (6)0.0427 (6)0.0113 (5)0.0180 (5)0.0061 (5)
O60.0670 (7)0.0698 (7)0.0467 (6)0.0169 (5)0.0023 (5)0.0268 (5)
Geometric parameters (Å, º) top
C1—C91.5289 (16)C17—C181.386 (2)
C1—C101.5368 (17)C17—H170.9300
C1—C21.5370 (17)C18—H180.9300
C1—C211.5668 (16)C19—O41.1970 (15)
C2—O21.2035 (15)C19—O31.3297 (16)
C2—C31.4812 (17)C20—O31.4374 (17)
C3—C81.3855 (17)C20—H20A0.9600
C3—C41.3862 (17)C20—H20B0.9600
C4—C51.378 (2)C20—H20C0.9600
C4—H40.9300C21—C221.4985 (18)
C5—C61.383 (2)C21—H21A0.9700
C5—H50.9300C21—H21B0.9700
C6—C71.378 (2)C22—C231.3359 (18)
C6—H60.9300C22—C301.4911 (19)
C7—C81.3868 (17)C23—C241.4735 (18)
C7—H70.9300C23—H230.9300
C8—C91.4752 (17)C24—C291.3902 (19)
C9—O11.2073 (14)C24—C251.3957 (19)
C10—C111.5070 (17)C25—C261.381 (2)
C10—H10A0.9700C25—H250.9300
C10—H10B0.9700C26—C271.369 (2)
C11—C121.3339 (17)C26—H260.9300
C11—C191.4841 (17)C27—C281.376 (2)
C12—C131.4779 (17)C27—H270.9300
C12—H120.9300C28—C291.379 (2)
C13—C141.385 (2)C28—H280.9300
C13—C181.3882 (19)C29—H290.9300
C14—C151.387 (2)C30—O61.1994 (17)
C14—H140.9300C30—O51.3354 (17)
C15—C161.370 (2)C31—O51.4453 (19)
C15—H150.9300C31—H31A0.9600
C16—C171.372 (3)C31—H31B0.9600
C16—H160.9300C31—H31C0.9600
C9—C1—C10114.88 (10)C16—C17—H17119.5
C9—C1—C2102.63 (9)C18—C17—H17119.5
C10—C1—C2114.96 (10)C17—C18—C13119.89 (15)
C9—C1—C21112.06 (10)C17—C18—H18120.1
C10—C1—C21108.52 (9)C13—C18—H18120.1
C2—C1—C21103.19 (9)O4—C19—O3122.35 (12)
O2—C2—C3126.87 (12)O4—C19—C11123.84 (12)
O2—C2—C1125.44 (12)O3—C19—C11113.78 (10)
C3—C2—C1107.57 (10)O3—C20—H20A109.5
C8—C3—C4120.86 (12)O3—C20—H20B109.5
C8—C3—C2109.67 (10)H20A—C20—H20B109.5
C4—C3—C2129.47 (12)O3—C20—H20C109.5
C5—C4—C3117.82 (13)H20A—C20—H20C109.5
C5—C4—H4121.1H20B—C20—H20C109.5
C3—C4—H4121.1C22—C21—C1114.63 (10)
C4—C5—C6121.34 (13)C22—C21—H21A108.6
C4—C5—H5119.3C1—C21—H21A108.6
C6—C5—H5119.3C22—C21—H21B108.6
C7—C6—C5121.08 (13)C1—C21—H21B108.6
C7—C6—H6119.5H21A—C21—H21B107.6
C5—C6—H6119.5C23—C22—C30119.34 (12)
C6—C7—C8117.83 (13)C23—C22—C21126.49 (12)
C6—C7—H7121.1C30—C22—C21114.10 (11)
C8—C7—H7121.1C22—C23—C24131.01 (12)
C3—C8—C7121.04 (12)C22—C23—H23114.5
C3—C8—C9110.18 (10)C24—C23—H23114.5
C7—C8—C9128.78 (12)C29—C24—C25117.80 (12)
O1—C9—C8126.17 (11)C29—C24—C23118.80 (12)
O1—C9—C1125.91 (11)C25—C24—C23123.09 (12)
C8—C9—C1107.88 (9)C26—C25—C24120.52 (13)
C11—C10—C1120.19 (10)C26—C25—H25119.7
C11—C10—H10A107.3C24—C25—H25119.7
C1—C10—H10A107.3C27—C26—C25120.79 (14)
C11—C10—H10B107.3C27—C26—H26119.6
C1—C10—H10B107.3C25—C26—H26119.6
H10A—C10—H10B106.9C26—C27—C28119.49 (14)
C12—C11—C19118.89 (11)C26—C27—H27120.3
C12—C11—C10124.08 (11)C28—C27—H27120.3
C19—C11—C10116.93 (10)C27—C28—C29120.30 (14)
C11—C12—C13128.02 (12)C27—C28—H28119.8
C11—C12—H12116.0C29—C28—H28119.8
C13—C12—H12116.0C28—C29—C24121.09 (13)
C14—C13—C18118.65 (12)C28—C29—H29119.5
C14—C13—C12120.66 (12)C24—C29—H29119.5
C18—C13—C12120.43 (13)O6—C30—O5123.11 (13)
C13—C14—C15120.79 (14)O6—C30—C22123.02 (13)
C13—C14—H14119.6O5—C30—C22113.82 (12)
C15—C14—H14119.6O5—C31—H31A109.5
C16—C15—C14120.12 (16)O5—C31—H31B109.5
C16—C15—H15119.9H31A—C31—H31B109.5
C14—C15—H15119.9O5—C31—H31C109.5
C15—C16—C17119.57 (14)H31A—C31—H31C109.5
C15—C16—H16120.2H31B—C31—H31C109.5
C17—C16—H16120.2C19—O3—C20116.63 (11)
C16—C17—C18120.93 (14)C30—O5—C31115.67 (13)
C9—C1—C2—O2169.81 (13)C11—C12—C13—C18127.96 (15)
C10—C1—C2—O244.38 (17)C18—C13—C14—C151.0 (2)
C21—C1—C2—O273.58 (15)C12—C13—C14—C15173.24 (14)
C9—C1—C2—C313.99 (12)C13—C14—C15—C162.1 (2)
C10—C1—C2—C3139.42 (10)C14—C15—C16—C171.0 (3)
C21—C1—C2—C3102.62 (10)C15—C16—C17—C181.2 (2)
O2—C2—C3—C8173.92 (13)C16—C17—C18—C132.3 (2)
C1—C2—C3—C89.95 (13)C14—C13—C18—C171.2 (2)
O2—C2—C3—C46.3 (2)C12—C13—C18—C17175.45 (13)
C1—C2—C3—C4169.83 (12)C12—C11—C19—O4171.63 (14)
C8—C3—C4—C50.54 (19)C10—C11—C19—O411.90 (19)
C2—C3—C4—C5179.70 (12)C12—C11—C19—O36.35 (17)
C3—C4—C5—C61.1 (2)C10—C11—C19—O3170.13 (11)
C4—C5—C6—C71.5 (2)C9—C1—C21—C2255.81 (13)
C5—C6—C7—C80.2 (2)C10—C1—C21—C2272.09 (13)
C4—C3—C8—C71.85 (19)C2—C1—C21—C22165.52 (10)
C2—C3—C8—C7178.35 (11)C1—C21—C22—C23102.49 (14)
C4—C3—C8—C9178.62 (11)C1—C21—C22—C3080.62 (13)
C2—C3—C8—C91.18 (14)C30—C22—C23—C24170.34 (12)
C6—C7—C8—C31.47 (19)C21—C22—C23—C246.4 (2)
C6—C7—C8—C9179.09 (12)C22—C23—C24—C29142.60 (15)
C3—C8—C9—O1169.82 (12)C22—C23—C24—C2544.0 (2)
C7—C8—C9—O19.7 (2)C29—C24—C25—C260.69 (19)
C3—C8—C9—C18.11 (13)C23—C24—C25—C26172.75 (13)
C7—C8—C9—C1172.40 (12)C24—C25—C26—C270.2 (2)
C10—C1—C9—O139.12 (17)C25—C26—C27—C280.5 (2)
C2—C1—C9—O1164.60 (12)C26—C27—C28—C290.6 (2)
C21—C1—C9—O185.33 (14)C27—C28—C29—C240.1 (2)
C10—C1—C9—C8138.82 (10)C25—C24—C29—C280.6 (2)
C2—C1—C9—C813.33 (12)C23—C24—C29—C28173.17 (13)
C21—C1—C9—C896.74 (11)C23—C22—C30—O6167.08 (13)
C9—C1—C10—C1132.08 (15)C21—C22—C30—O610.05 (18)
C2—C1—C10—C1186.71 (13)C23—C22—C30—O510.50 (17)
C21—C1—C10—C11158.36 (10)C21—C22—C30—O5172.37 (11)
C1—C10—C11—C12126.37 (13)O4—C19—O3—C201.5 (2)
C1—C10—C11—C1957.36 (15)C11—C19—O3—C20179.47 (13)
C19—C11—C12—C13171.64 (12)O6—C30—O5—C310.5 (2)
C10—C11—C12—C1312.2 (2)C22—C30—O5—C31177.03 (13)
C11—C12—C13—C1457.91 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13–C18 and C24–C29 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···O10.932.403.288 (2)161
C27—H27···O2i0.932.463.207 (2)137
C31—H31C···Cg1ii0.962.873.554 (2)129
C20—H20B···Cg2iii0.962.863.500 (2)125
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC31H26O6
Mr494.52
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.5657 (4), 10.9275 (5), 11.8961 (5)
α, β, γ (°)71.250 (2), 77.889 (3), 76.656 (2)
V3)1251.70 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.23 × 0.17
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.978, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
25995, 6921, 5016
Rint0.028
(sin θ/λ)max1)0.699
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.128, 1.04
No. of reflections6921
No. of parameters337
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.18

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C13–C18 and C24–C29 benzene rings, respectively.
D—H···AD—HH···AD···AD—H···A
C14—H14···O10.932.403.288 (2)161.0
C27—H27···O2i0.932.463.207 (2)137.3
C31—H31C···Cg1ii0.962.873.554 (2)129.0
C20—H20B···Cg2iii0.962.863.500 (2)125.0
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x, y, z+1.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRayabarapu, D. K., Yang, C. H. & Cheng, C. H. (2003). J. Org. Chem. 68, 6726–6731.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSenanayake, C. H., Roberts, F. E., DiMichele, L. M., Ryan, K. M., Liu, J., Fredenburgh, L. E., Foster, B. S., Douglas, A. W., Larsen, R. D., Verhoeven, T. R. & Reider, P. J. (1995). Tetrahedron Lett. 36, 3993–3996.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1563-o1564
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds