organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1554

Di­ethyl [(2-bromo­anilino)(1,3-di­phenyl-1H-pyrazol-4-yl)meth­yl]phospho­nate

aDepartment of Physics, Presidency college (Autonomous), Chennai 600 005, India, and bOrganic Chemistry Laboratory, CLRI, Chennai, Tamil Nadu, India
*Correspondence e-mail: aravindhanpresidency@gmail.com

(Received 9 April 2012; accepted 21 April 2012; online 28 April 2012)

In the title compound, C26H27BrN3O3P, the central pyrazole ring forms a dihedral angle of 71.7 (2)° with the bromo­phenyl ring. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers with R22(10) ring motifs. Four C atoms of the 3-phenyl ring are disordered over two sets of sites [site occupancies = 0.745 (6) and 0.225 (6)].

Related literature

For information on pyrazole derivatives, see: Sullivan et al. (2006[Sullivan, T. J., Truglio, J. J., Boyne, M. E., Novichenok, P., Zhang, X., Stratton, C. F., Li, H.-J., Kaur, T., Amin, A., Johnson, F., Slayden, R. A., Kisker, C. & Tonge, P. J. (2006). ACS Chem. Biol. 1, 43-53.]); Patel et al. (2010[Patel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73-78.]). For a related structure, see: Saeed et al. (2009[Saeed, A., Hussain, S. & Bolte, M. (2009). Acta Cryst. E65, o1231.]).

[Scheme 1]

Experimental

Crystal data
  • C26H27BrN3O3P

  • Mr = 540.39

  • Monoclinic, P 21 /c

  • a = 11.2553 (6) Å

  • b = 23.9104 (15) Å

  • c = 9.4741 (5) Å

  • β = 91.229 (3)°

  • V = 2549.1 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 293 K

  • 0.25 × 0.22 × 0.19 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]) Tmin = 0.953, Tmax = 0.964

  • 35555 measured reflections

  • 4502 independent reflections

  • 3093 reflections with I > 2σ(I)

  • Rint = 0.065

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.129

  • S = 1.09

  • 4502 reflections

  • 346 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.48 3.305 (4) 162
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyrazoles exhibit a variety of pharmacological properties for e.g antibacterial and anti-inflammatory activities (Sullivan et al., 2006; Patel et al., 2010). In view of their importance, the crystal structure determination of the title compound was carried out and the results are presented here.

X-Ray analysis confirms the molecular structure and atom connectivity as illustrated in Fig. 1. The bond lengths N2—C13 and N3—C14 are normal and comparable to the corresponding values observed in the related structure of 3-(3-Chloroanilino)-1-(3,5-dimethyl-1H-pyrazol-1-yl)propan-1-one (Saeed et al., 2009). The central pyrazole ring and the bromophenyl ring are almost perpendicular with the dihedral angle of 71.7 (2) °, whereas the two phenyl rings are twisted from the pyrazole ring as can be seen from the dihedral angle of 15.0 (1)° and 39.3 (3)°, respectively. The pyrazole ring system is essentially planar, with maximum deviation of 0.006 (4) for atom C14. The sum of bond angles around N2[359.7 (3) °] of the pyrazole ring is in accordance with sp3 hybridization. The atoms Br1 and N1 are deviated by -0.039 (1) Å and 0.019 (3) Å from the leastsquares plane of the benzene(C1—C6) ring. The four carbon atoms in the phenyl ring are disordered over two sets of sites [site occupancies = 0.745 (6) and 0.225 (6)].

The phosphinite group assumes an extended conformation as can be seen from torsion angles P1—O2—C8—C9 of -179.0 (5)°. A pair of N1—H1···O1 hydrogen bonds at x,y,z and -x,1 - y,2 - z form a cyclic centrosymmetric dimer [R22(10)]. These hdrogen bonds are crosslinked to Br1 to form S(5) ring (C1—C6—N1—H1—Br1) motif. The crystal packing is stabilized N—H···O hydrogen bonds.

Related literature top

For information on pyrazole derivatives, see: Sullivan et al. (2006); Patel et al. (2010). For a related structure, see: Saeed et al. (2009).

Experimental top

A mixture of 1,3-diphenyl-1H-pyrazole-4-carbaldehyde (1 mmol), 2-bromoaniline (1 mmol), diethyl phosphite (1.5 mmol), and pottasium hydrogen sulfate (20 mol-%) under neat condition was stirred at room temperature. After completion of the reaction as indicated by TLC, it was poured into water and extracted with ethyl acetate. The organic layer was dried over sodium sulfate and concentrated under vacuum. The crude product was chromatographed.

Refinement top

The four carbon atoms in one of the phenyl ring are disordered over two positions (C22/C22', C23/C23',C25/C25'and C26/C26') with refined occupancies of 0.745 (6) and 0.225 (6). The corresponding bond distances involving the disordered atoms were restrained to be equal. All H atoms were fixed geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 10% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Partial crystal packing diagram of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
Diethyl [(2-bromoanilino)(1,3-diphenyl-1H-pyrazol-4-yl)methyl]phosphonate top
Crystal data top
C26H27BrN3O3PF(000) = 1112
Mr = 540.39Dx = 1.408 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4502 reflections
a = 11.2553 (6) Åθ = 1.8–25.0°
b = 23.9104 (15) ŵ = 1.71 mm1
c = 9.4741 (5) ÅT = 293 K
β = 91.229 (3)°Block, colourless
V = 2549.1 (2) Å30.25 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4502 independent reflections
Radiation source: fine-focus sealed tube3093 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
ω and ϕ scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.953, Tmax = 0.964k = 2827
35555 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0498P)2 + 2.1289P]
where P = (Fo2 + 2Fc2)/3
4502 reflections(Δ/σ)max = 0.001
346 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C26H27BrN3O3PV = 2549.1 (2) Å3
Mr = 540.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.2553 (6) ŵ = 1.71 mm1
b = 23.9104 (15) ÅT = 293 K
c = 9.4741 (5) Å0.25 × 0.22 × 0.19 mm
β = 91.229 (3)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4502 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
3093 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.964Rint = 0.065
35555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.129H-atom parameters constrained
S = 1.09Δρmax = 0.63 e Å3
4502 reflectionsΔρmin = 0.34 e Å3
346 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7034 (4)0.66776 (16)0.0245 (4)0.0574 (10)
C20.7722 (4)0.7133 (2)0.0147 (5)0.0779 (13)
H20.84810.71770.02070.093*
C30.7276 (5)0.7521 (2)0.1063 (5)0.0865 (15)
H30.77330.78290.13290.104*
C40.6169 (5)0.74563 (19)0.1580 (5)0.0781 (13)
H40.58670.77230.21910.094*
C50.5490 (4)0.69993 (18)0.1209 (4)0.0673 (11)
H50.47420.69580.15930.081*
C60.5898 (3)0.65948 (15)0.0268 (4)0.0511 (9)
C70.3974 (3)0.60774 (16)0.0142 (4)0.0505 (9)
H70.36630.64530.03150.061*
C80.4361 (6)0.5769 (3)0.4318 (5)0.120 (2)
H8A0.35570.57080.46340.143*
H8B0.47620.54100.43150.143*
C90.4960 (6)0.6131 (3)0.5283 (6)0.143 (3)
H9A0.57450.62060.49550.214*
H9B0.50120.59560.61950.214*
H9C0.45270.64760.53530.214*
C100.1356 (5)0.5406 (2)0.1624 (7)0.1005 (18)
H10A0.16400.51140.10070.121*
H10B0.10720.52300.24760.121*
C110.0402 (5)0.5692 (3)0.0941 (8)0.136 (3)
H11A0.02270.60270.14550.204*
H11B0.02870.54550.09090.204*
H11C0.06200.57880.00020.204*
C120.3294 (3)0.58391 (16)0.1095 (4)0.0468 (8)
C130.3284 (3)0.52928 (17)0.1523 (4)0.0530 (9)
H130.37330.50040.11270.064*
C140.2477 (3)0.61084 (16)0.2020 (4)0.0482 (9)
C150.2134 (3)0.47520 (16)0.3328 (4)0.0490 (9)
C160.2418 (4)0.42335 (18)0.2799 (5)0.0724 (13)
H160.29010.42040.19940.087*
C170.1996 (5)0.37591 (19)0.3447 (5)0.0813 (14)
H170.22010.34100.30820.098*
C180.1276 (4)0.3795 (2)0.4627 (5)0.0758 (13)
H180.09600.34740.50420.091*
C190.1031 (4)0.4311 (2)0.5184 (5)0.0775 (14)
H190.05640.43370.60040.093*
C200.1461 (4)0.47938 (19)0.4557 (4)0.0695 (12)
H200.13000.51410.49580.083*
C240.1410 (7)0.7813 (3)0.2076 (8)0.115 (2)
H240.11730.81850.21030.138*
C210.2108 (3)0.67015 (16)0.2048 (4)0.0568 (10)
C220.2954 (5)0.7121 (2)0.1798 (6)0.0693 (17)0.745 (6)
H220.37460.70270.16270.083*0.745 (6)
C230.2609 (7)0.7677 (3)0.1808 (8)0.092 (2)0.745 (6)
H230.31650.79580.16390.110*0.745 (6)
C250.0615 (8)0.7409 (4)0.2291 (12)0.114 (3)0.745 (6)
H250.01790.75020.24450.137*0.745 (6)
C260.0949 (6)0.6850 (3)0.2290 (8)0.082 (2)0.745 (6)
H260.03800.65740.24550.098*0.745 (6)
C22'0.178 (2)0.6952 (8)0.3278 (19)0.083 (7)0.255 (6)
H22'0.17870.67430.41060.100*0.255 (6)
C23'0.143 (3)0.7510 (10)0.335 (2)0.104 (9)0.255 (6)
H23'0.12230.76760.42050.125*0.255 (6)
C25'0.144 (2)0.7541 (9)0.083 (2)0.093 (7)0.255 (6)
H25'0.12120.77230.00140.111*0.255 (6)
C26'0.1800 (15)0.6992 (7)0.0784 (16)0.067 (5)0.255 (6)
H26'0.18460.68080.00800.080*0.255 (6)
N10.5235 (3)0.61313 (13)0.0113 (3)0.0555 (8)
H10.55890.58600.05250.067*
N20.2510 (2)0.52470 (13)0.2618 (3)0.0488 (7)
N30.1990 (3)0.57471 (13)0.2936 (3)0.0514 (7)
O10.3995 (3)0.50661 (12)0.1577 (3)0.0676 (8)
O20.4314 (3)0.59874 (12)0.2902 (3)0.0672 (8)
O30.2326 (2)0.57768 (13)0.1987 (3)0.0731 (8)
P10.36718 (9)0.56534 (5)0.16934 (10)0.0536 (3)
Br10.76574 (4)0.61592 (2)0.15402 (5)0.0757 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.068 (2)0.048 (2)0.056 (2)0.013 (2)0.0117 (19)0.0093 (18)
C20.083 (3)0.068 (3)0.082 (3)0.033 (3)0.004 (2)0.005 (3)
C30.116 (4)0.062 (3)0.081 (3)0.038 (3)0.007 (3)0.004 (3)
C40.107 (4)0.051 (3)0.075 (3)0.011 (3)0.005 (3)0.014 (2)
C50.078 (3)0.057 (3)0.066 (3)0.008 (2)0.007 (2)0.010 (2)
C60.063 (2)0.041 (2)0.049 (2)0.0047 (18)0.0167 (17)0.0025 (17)
C70.048 (2)0.051 (2)0.051 (2)0.0002 (17)0.0102 (16)0.0067 (17)
C80.167 (6)0.137 (6)0.053 (3)0.051 (5)0.024 (3)0.012 (3)
C90.139 (6)0.229 (9)0.060 (3)0.058 (5)0.014 (3)0.022 (4)
C100.078 (3)0.093 (4)0.130 (5)0.024 (3)0.012 (3)0.019 (3)
C110.062 (3)0.153 (7)0.193 (7)0.007 (4)0.022 (4)0.021 (5)
C120.0424 (19)0.051 (2)0.0463 (19)0.0025 (17)0.0058 (15)0.0005 (17)
C130.051 (2)0.056 (3)0.051 (2)0.0059 (18)0.0178 (17)0.0033 (18)
C140.0476 (19)0.052 (2)0.0448 (19)0.0049 (17)0.0047 (15)0.0027 (17)
C150.047 (2)0.056 (2)0.044 (2)0.0036 (17)0.0028 (16)0.0077 (17)
C160.097 (3)0.056 (3)0.062 (3)0.000 (2)0.031 (2)0.002 (2)
C170.109 (4)0.052 (3)0.082 (3)0.001 (2)0.026 (3)0.002 (2)
C180.082 (3)0.063 (3)0.082 (3)0.000 (2)0.008 (2)0.027 (2)
C190.091 (3)0.071 (3)0.069 (3)0.014 (3)0.031 (2)0.025 (2)
C200.086 (3)0.058 (3)0.063 (3)0.014 (2)0.029 (2)0.012 (2)
C240.136 (6)0.055 (4)0.152 (7)0.018 (4)0.006 (5)0.009 (4)
C210.062 (2)0.047 (2)0.060 (2)0.0024 (19)0.0069 (19)0.0054 (19)
C220.069 (4)0.058 (4)0.081 (4)0.009 (3)0.003 (3)0.009 (3)
C230.102 (6)0.050 (4)0.123 (6)0.015 (4)0.008 (5)0.003 (4)
C250.091 (5)0.071 (6)0.178 (10)0.019 (5)0.029 (6)0.019 (5)
C260.069 (4)0.056 (4)0.118 (6)0.000 (3)0.019 (4)0.008 (4)
C22'0.127 (18)0.060 (12)0.062 (11)0.047 (12)0.016 (11)0.005 (9)
C23'0.16 (2)0.079 (15)0.069 (13)0.057 (16)0.003 (14)0.018 (12)
C25'0.130 (19)0.080 (14)0.068 (12)0.049 (13)0.008 (12)0.011 (11)
C26'0.084 (12)0.072 (12)0.045 (9)0.018 (9)0.012 (8)0.004 (8)
N10.0503 (17)0.0497 (19)0.066 (2)0.0076 (15)0.0058 (14)0.0149 (16)
N20.0516 (17)0.0470 (19)0.0474 (17)0.0032 (14)0.0117 (13)0.0028 (14)
N30.0570 (18)0.0499 (19)0.0467 (16)0.0017 (15)0.0124 (14)0.0023 (15)
O10.0795 (19)0.0542 (18)0.0686 (17)0.0002 (14)0.0087 (14)0.0044 (14)
O20.0795 (19)0.0733 (19)0.0479 (15)0.0120 (15)0.0163 (13)0.0021 (13)
O30.0599 (17)0.080 (2)0.0793 (19)0.0114 (15)0.0013 (14)0.0111 (16)
P10.0526 (5)0.0572 (7)0.0506 (6)0.0040 (5)0.0092 (4)0.0032 (5)
Br10.0700 (3)0.0664 (3)0.0911 (4)0.0081 (2)0.0090 (2)0.0043 (2)
Geometric parameters (Å, º) top
C1—C21.383 (6)C15—C201.379 (5)
C1—C61.392 (5)C15—N21.422 (5)
C1—Br11.890 (4)C16—C171.370 (6)
C2—C31.372 (7)C16—H160.9300
C2—H20.9300C17—C181.369 (6)
C3—C41.358 (7)C17—H170.9300
C3—H30.9300C18—C191.368 (6)
C4—C51.374 (6)C18—H180.9300
C4—H40.9300C19—C201.382 (6)
C5—C61.400 (6)C19—H190.9300
C5—H50.9300C20—H200.9300
C6—N11.380 (4)C24—C251.330 (10)
C7—N11.451 (5)C24—C25'1.34 (2)
C7—C121.498 (5)C24—C231.406 (9)
C7—P11.824 (4)C24—C23'1.41 (2)
C7—H70.9800C24—H240.9300
C8—C91.419 (8)C21—C22'1.355 (17)
C8—O21.439 (5)C21—C261.366 (7)
C8—H8A0.9700C21—C221.400 (7)
C8—H8B0.9700C21—C26'1.434 (16)
C9—H9A0.9600C22—C231.384 (9)
C9—H9B0.9600C22—H220.9300
C9—H9C0.9600C23—H230.9300
C10—C111.417 (8)C25—C261.388 (10)
C10—O31.442 (5)C25—H250.9300
C10—H10A0.9700C26—H260.9300
C10—H10B0.9700C22'—C23'1.39 (3)
C11—H11A0.9600C22'—H22'0.9300
C11—H11B0.9600C23'—H23'0.9300
C11—H11C0.9600C25'—C26'1.38 (2)
C12—C131.368 (5)C25'—H25'0.9300
C12—C141.412 (5)C26'—H26'0.9300
C13—N21.344 (4)N1—H10.8600
C13—H130.9300N2—N31.362 (4)
C14—N31.334 (4)O1—P11.455 (3)
C14—C211.478 (5)O2—P11.561 (3)
C15—C161.373 (6)O3—P11.574 (3)
C2—C1—C6122.1 (4)C19—C18—H18120.6
C2—C1—Br1118.5 (4)C17—C18—H18120.6
C6—C1—Br1119.3 (3)C18—C19—C20121.5 (4)
C3—C2—C1119.5 (5)C18—C19—H19119.3
C3—C2—H2120.3C20—C19—H19119.3
C1—C2—H2120.3C15—C20—C19118.9 (4)
C4—C3—C2120.1 (4)C15—C20—H20120.5
C4—C3—H3119.9C19—C20—H20120.5
C2—C3—H3119.9C25—C24—C25'77.6 (12)
C3—C4—C5120.5 (5)C25—C24—C23120.0 (6)
C3—C4—H4119.7C25'—C24—C2374.1 (11)
C5—C4—H4119.7C25—C24—C23'61.2 (12)
C4—C5—C6121.6 (4)C25'—C24—C23'120.1 (13)
C4—C5—H5119.2C23—C24—C23'90.0 (12)
C6—C5—H5119.2C25—C24—H24120.0
N1—C6—C1121.2 (4)C25'—C24—H24119.2
N1—C6—C5122.6 (4)C23—C24—H24120.0
C1—C6—C5116.1 (4)C23'—C24—H24118.7
N1—C7—C12112.8 (3)C22'—C21—C2660.0 (10)
N1—C7—P1112.6 (2)C22'—C21—C2290.0 (11)
C12—C7—P1108.5 (2)C26—C21—C22119.1 (5)
N1—C7—H7107.5C22'—C21—C26'116.0 (10)
C12—C7—H7107.5C26—C21—C26'76.5 (7)
P1—C7—H7107.5C22—C21—C26'71.8 (8)
C9—C8—O2112.7 (5)C22'—C21—C14120.7 (8)
C9—C8—H8A109.0C26—C21—C14121.2 (4)
O2—C8—H8A109.0C22—C21—C14119.7 (4)
C9—C8—H8B109.0C26'—C21—C14121.6 (7)
O2—C8—H8B109.0C23—C22—C21119.8 (6)
H8A—C8—H8B107.8C23—C22—H22120.1
C8—C9—H9A109.5C21—C22—H22120.1
C8—C9—H9B109.5C22—C23—C24119.4 (6)
H9A—C9—H9B109.5C22—C23—H23120.3
C8—C9—H9C109.5C24—C23—H23120.3
H9A—C9—H9C109.5C24—C25—C26121.2 (7)
H9B—C9—H9C109.5C24—C25—H25119.4
C11—C10—O3112.0 (5)C26—C25—H25119.4
C11—C10—H10A109.2C21—C26—C25120.5 (6)
O3—C10—H10A109.2C21—C26—H26119.8
C11—C10—H10B109.2C25—C26—H26119.8
O3—C10—H10B109.2C21—C22'—C23'122.4 (16)
H10A—C10—H10B107.9C21—C22'—H22'118.8
C10—C11—H11A109.5C23'—C22'—H22'118.8
C10—C11—H11B109.5C22'—C23'—C24117.6 (16)
H11A—C11—H11B109.5C22'—C23'—H23'121.2
C10—C11—H11C109.5C24—C23'—H23'121.2
H11A—C11—H11C109.5C24—C25'—C26'119.5 (15)
H11B—C11—H11C109.5C24—C25'—H25'120.2
C13—C12—C14104.5 (3)C26'—C25'—H25'120.2
C13—C12—C7126.6 (3)C25'—C26'—C21120.7 (14)
C14—C12—C7128.8 (3)C25'—C26'—H26'119.6
N2—C13—C12107.9 (3)C21—C26'—H26'119.6
N2—C13—H13126.0C6—N1—C7123.6 (3)
C12—C13—H13126.0C6—N1—H1118.2
N3—C14—C12111.2 (3)C7—N1—H1118.2
N3—C14—C21119.9 (3)C13—N2—N3111.6 (3)
C12—C14—C21128.9 (3)C13—N2—C15127.9 (3)
C16—C15—C20119.6 (4)N3—N2—C15120.2 (3)
C16—C15—N2120.9 (3)C14—N3—N2104.8 (3)
C20—C15—N2119.5 (3)C8—O2—P1120.3 (3)
C17—C16—C15120.6 (4)C10—O3—P1124.7 (3)
C17—C16—H16119.7O1—P1—O2115.90 (17)
C15—C16—H16119.7O1—P1—O3115.93 (18)
C18—C17—C16120.5 (4)O2—P1—O3101.93 (16)
C18—C17—H17119.7O1—P1—C7115.09 (17)
C16—C17—H17119.7O2—P1—C7102.44 (16)
C19—C18—C17118.8 (4)O3—P1—C7103.59 (17)
C6—C1—C2—C30.5 (7)C22—C21—C26—C250.1 (11)
Br1—C1—C2—C3178.6 (4)C26'—C21—C26—C2560.1 (11)
C1—C2—C3—C40.1 (8)C14—C21—C26—C25179.0 (7)
C2—C3—C4—C50.9 (8)C24—C25—C26—C210.8 (15)
C3—C4—C5—C61.5 (7)C26—C21—C22'—C23'70 (2)
C2—C1—C6—N1178.6 (4)C22—C21—C22'—C23'55 (2)
Br1—C1—C6—N12.3 (5)C26'—C21—C22'—C23'15 (3)
C2—C1—C6—C50.2 (6)C14—C21—C22'—C23'180 (2)
Br1—C1—C6—C5179.2 (3)C21—C22'—C23'—C241 (4)
C4—C5—C6—N1179.6 (4)C25—C24—C23'—C22'69 (2)
C4—C5—C6—C11.2 (6)C25'—C24—C23'—C22'16 (3)
N1—C7—C12—C1374.8 (5)C23—C24—C23'—C22'56 (3)
P1—C7—C12—C1350.7 (5)C25—C24—C25'—C26'63 (2)
N1—C7—C12—C14109.5 (4)C23—C24—C25'—C26'63.4 (19)
P1—C7—C12—C14125.0 (4)C23'—C24—C25'—C26'17 (3)
C14—C12—C13—N20.3 (4)C24—C25'—C26'—C212 (3)
C7—C12—C13—N2176.3 (3)C22'—C21—C26'—C25'14 (2)
C13—C12—C14—N30.9 (4)C26—C21—C26'—C25'60.1 (17)
C7—C12—C14—N3175.6 (3)C22—C21—C26'—C25'67.1 (17)
C13—C12—C14—C21179.0 (4)C14—C21—C26'—C25'178.8 (15)
C7—C12—C14—C212.5 (6)C1—C6—N1—C7166.8 (3)
C20—C15—C16—C172.9 (7)C5—C6—N1—C714.8 (5)
N2—C15—C16—C17176.3 (4)C12—C7—N1—C6136.8 (3)
C15—C16—C17—C180.5 (8)P1—C7—N1—C699.9 (4)
C16—C17—C18—C193.0 (8)C12—C13—N2—N30.4 (4)
C17—C18—C19—C202.1 (8)C12—C13—N2—C15174.3 (3)
C16—C15—C20—C193.7 (7)C16—C15—N2—C139.9 (6)
N2—C15—C20—C19175.5 (4)C20—C15—N2—C13170.8 (4)
C18—C19—C20—C151.2 (7)C16—C15—N2—N3163.5 (4)
N3—C14—C21—C22'32.5 (14)C20—C15—N2—N315.7 (5)
C12—C14—C21—C22'149.6 (13)C12—C14—N3—N21.1 (4)
N3—C14—C21—C2638.8 (7)C21—C14—N3—N2179.4 (3)
C12—C14—C21—C26139.2 (5)C13—N2—N3—C141.0 (4)
N3—C14—C21—C22142.3 (4)C15—N2—N3—C14175.4 (3)
C12—C14—C21—C2239.7 (6)C9—C8—O2—P1179.0 (5)
N3—C14—C21—C26'131.9 (9)C11—C10—O3—P1132.9 (5)
C12—C14—C21—C26'46.1 (10)C8—O2—P1—O149.5 (5)
C22'—C21—C22—C2354.7 (10)C8—O2—P1—O377.4 (4)
C26—C21—C22—C230.4 (9)C8—O2—P1—C7175.6 (4)
C26'—C21—C22—C2362.7 (9)C10—O3—P1—O124.8 (4)
C14—C21—C22—C23179.3 (5)C10—O3—P1—O2151.6 (4)
C21—C22—C23—C240.3 (10)C10—O3—P1—C7102.2 (4)
C25—C24—C23—C221.3 (13)N1—C7—P1—O166.3 (3)
C25'—C24—C23—C2266.3 (11)C12—C7—P1—O159.4 (3)
C23'—C24—C23—C2255.0 (13)N1—C7—P1—O260.4 (3)
C25'—C24—C25—C2664.8 (13)C12—C7—P1—O2173.9 (2)
C23—C24—C25—C261.5 (16)N1—C7—P1—O3166.2 (2)
C23'—C24—C25—C2670.1 (13)C12—C7—P1—O368.2 (3)
C22'—C21—C26—C2571.2 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.483.305 (4)162
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC26H27BrN3O3P
Mr540.39
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.2553 (6), 23.9104 (15), 9.4741 (5)
β (°) 91.229 (3)
V3)2549.1 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.25 × 0.22 × 0.19
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.953, 0.964
No. of measured, independent and
observed [I > 2σ(I)] reflections
35555, 4502, 3093
Rint0.065
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.129, 1.09
No. of reflections4502
No. of parameters346
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.34

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.483.305 (4)162.1
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

SA thanks the UGC, India, for financial support.

References

First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationPatel, C. K., Rami, C. S., Panigrahi, B. & Patel, C. N. (2010). J. Chem. Pharm. Res. 2, 73–78.  CAS Google Scholar
First citationSaeed, A., Hussain, S. & Bolte, M. (2009). Acta Cryst. E65, o1231.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSullivan, T. J., Truglio, J. J., Boyne, M. E., Novichenok, P., Zhang, X., Stratton, C. F., Li, H.-J., Kaur, T., Amin, A., Johnson, F., Slayden, R. A., Kisker, C. & Tonge, P. J. (2006). ACS Chem. Biol. 1, 43–53.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1554
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds