metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m635-m636

Bis{4-phenyl-1-[1-(pyridin-2-yl-κN)ethyl­­idene]thio­semicarbazidato-κ2N1,S}cadmium

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900 Rio Grande-RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Campus, 97105-900 Santa Maria-RS, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000 São Cristóvão-SE, Brazil
*Correspondence e-mail: adriano@daad-alumni.de

(Received 12 April 2012; accepted 16 April 2012; online 21 April 2012)

The reaction of cadmium acetate dihydrate with 2-acetyl­pyridine (4-phenyl­thio­semicarbazone) yielded the title compound, [Cd(C14H13N4S)2]. The CdII atom is six-coordin­ated in a distorted octa­hedral environment by two deproton­ated thio­semicarbazone ligands acting in a tridentate chelating mode through two N and one S atoms, forming metalla-rings. In the crystal, mol­ecules are connected through inversion centers via pairs of N—H⋯S inter­actions, building a one-dimensional hydrogen-bonded polymer along [0-1-1].

Related literature

For the synthesis of 2-acetyl­pyridine-(4-phenyl­thio­semi­carbazone), see: Offiong & Martelli (1997[Offiong, E. O. & Martelli, S. (1997). Transition Met. Chem. 22, 263-269.]). For thio­semi­carbazone complexes with similar coordination environments, see: Ali et al. (2002[Ali, M. A., Mirza, A. H., Nazimuddin, M., Rahman, H. & Butcher, R. J. (2002). Transition Met. Chem. 27, 268-273.]); Kovala-Demertzi et al. (2005[Kovala-Demertzi, D., Gangadharmath, U., Demertzis, M. A. & Sanakis, Y. (2005). Inorg. Chem. Commun. 8, 619-622.]). For the anti­bacterial and anti­fungal activity of CdII thio­semicarbazone complexes, see: Alomar et al. (2010[Alomar, K., Landreau, A., Kempf, M., Kahn, M. A., Allain, M. & Bouet, G. (2010). J. Inorg. Biochem. 104, 397-404.]). For the bioinorganic chemistry of the CdII ion and its relation to biologically important ions, namely ZnII and CaII, see: Kaim & Schwederski (1995[Kaim, W. & Schwederski, B. (1995). Bioanorganische Chemie: zur Funktion chemischer Elemente in Lebensprozessen, 2nd ed. Stuttgart: B. G. Teubner.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C14H13N4S)2]

  • Mr = 651.09

  • Triclinic, [P \overline 1]

  • a = 9.8452 (2) Å

  • b = 13.0116 (3) Å

  • c = 13.1736 (5) Å

  • α = 116.495 (1)°

  • β = 105.757 (1)°

  • γ = 96.122 (1)°

  • V = 1401.81 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 296 K

  • 0.22 × 0.14 × 0.11 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.816, Tmax = 0.902

  • 29421 measured reflections

  • 8199 independent reflections

  • 5975 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.080

  • S = 1.06

  • 8199 reflections

  • 362 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.75 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H8⋯S1i 0.84 (2) 2.60 (3) 3.437 (2) 172 (2)
N8—H21⋯S2ii 0.83 (3) 2.79 (3) 3.513 (2) 147 (2)
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x, -y, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazone derivatives have a wide range of applications on biological inorganic chemistry. For example, some CdII thiosemicarbazone complexes show important antibacterial and antifungal activity against Acinetobacter baumannii and Aspergillus fumigatus, respectively (Alomar et al., 2010). In addition, the CdII ion has similarity with two biologically important elements, namely ZnII and CaII. The ionic radii for these cations are 0,95 Å, 0,74 Å and 1,00 Å, respectively, and the chemical similarity suggests that CdII may displace ZnII and CaII from critical biological sites (Kaim & Schwederski, 1995), making the cadmium coordination chemistry very attractive. As part of our study of thiosemicarbazone derivatives, we report herein the synthesis and the crystal structure of a new CdII complex with 2-acetylpyridine-(4-phenylthiosemicarbazone).

In the title compound, in which the molecular structure unit matches the asymmetric unit, the CdII ion is six-coordinated in a distorted octahedral environment by two deprotonated 2-acetylpyridine-(4-phenylthiosemicarbazone) ligands acting in a tridentate chelating mode, forming five-membered rings (Fig. 1). The selected bond angles formed between donor atoms trough the Cd1 atom are N6—Cd1—N2 = 151.43 (7)°, N1—Cd1—S1 = 134.61 (5)° and N5—Cd1—S2 = 143.06 (5)° and show clearly a distorted octahedral environment. The displacement from ideal coordination geometry is probably a consequence of the geometrical requirements of the ligand and of crystal packing interactions.

The acidic hydrogen of the hydrazine fragment is lost by the reaction with KOH, which is in agreement for thiosemicarbazone derivatives prepared from aldehydes or ketones. The negative charge is delocalized over the C—N—N—C—S fragment as indicated by their intermediate bond distances. The imine and thioamide C—N distances indicate considerable double bond character, while the C—S distance is consistent with increased single bond character. For the first ligand, these distances are C6—N2 = 1.285 (3) Å, N2—N3 = 1.385 (2) Å, N3—C8 = 1.311 (3) Å and C8—S1 = 1.748 (2) Å and for the second ligand, they are C20—N6 = 1.291 (3) Å, N6—N7 = 1.373 (3) Å, N7—C22 = 1.305 (3) Å and C22—S2 = 1.738 (2) Å.

The two ligands are coordinated to the CdII ion in their meridional conformations with the S1/S2 thiolate and the N1/N5 pyridyl atoms cis to each other, while the N2/N6 azomethine atoms are trans to each other. A similar meridional conformation has also been observed in the MnII complex with the same thiosemicarbazone ligand (Kovala-Demertzi et al., 2005) and in several CdII complexes with tridentate "NNS"-chelating ligands derived from thiosemicarbazones (Ali et al., 2002). The two ligands show a Z—E—Z conformation for the donor atoms about the C1—C6/C6—N2/N3—C8 and the C15—C20/C20—N6/N7—C22 bonds, respectively.

The ligands are not planar (Fig. 1 and Fig. 2), the mean deviations from the least squares planes for the chelated fragments Cd1/N1/C1/C6/N2 and Cd1/N2/N3/C8/S1 amount to -0,0644 (16) ° for C1 and -0,2702 (12) ° for N2, respectively, and the dihedral angle between the two planes is 20,15 (10)°. The maximal deviation from the least squares plane through all non-hydrogen atoms for the acetylpyridine derivative fragment C1/C2/C3/C4/C5/C6/C7/N1 and for the phenyl-thiosemicarbazone derivative fragment C8/C9/C10/C11/C12/C13/C14/N2/N3/N4/S1 amount to 0,1120 (19) Å for C7 and 0,1301 (16) Å for N2, respectively, and the dihedral angle between the two planes is 30,76 (08)°.

Additionally, the mean deviations from the least squares planes for the chelated fragments Cd1/N5/C15/C20/N6 and Cd1/N6/N7/C22/S2 amount to 0,0489 (13) Å for N5 and 0,0371 (12) Å for N6, respectively, and the dihedral angle between the two planes is 4,31 (07)°. The maximal deviation from the least squares plane through all non-hydrogen atoms for the acetylpyridine derivative fragment C15/C16/C17/C18/C19/C20/C21/N5 and for the phenyl-thiosemicarbazone derivative fragment C22/C23/C24/C25/C26/C27/C28/N6/N7/N8/S2 amount to 0,0457 (17) Å for C21 and -0,5623 (31) Å for C28, respectively, and the dihedral angle between the two planes is 14,77 (11)°. The displacement from planarity, for both of the ligands, is probably a consequence of the coordination with the CdII ion and of crystal packing interactions.

The crystal packing is stabilized by intermolecular hydrogen bonding. The molecules are connected through inversion centers via pairs of N—H···S interactions (Table 1; N4—H8···S1i and N8—H21···S2ii), building a one-dimensional H-bonded polymer along the (0 1 1) direction (Fig. 2). Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y, -z.

Related literature top

For the synthesis of 2-acetylpyridine-(4-phenylthiosemicarbazone), see: Offiong & Martelli (1997). For thiosemicarbazone complexes with similar coordination environments, see: Ali et al. (2002); Kovala-Demertzi et al. (2005). For the antibacterial and antifungal activity of CdII thiosemicarbazone complexes, see: Alomar et al. (2010). For the bioinorganic chemistry of the CdII ion and its relation to biologically important ions, namely ZnII and CaII, see: Kaim & Schwederski (1995).

Experimental top

Starting materials were commercially available and were used without further purification. The synthesis of 2-acetylpyridine-(4-phenylthiosemicarbazone) was adapted from a procedure reported previously (Offiong & Martelli, 1997). 2-Acetylpyridine-(4-phenylthiosemicarbazone) (2 mmol) was dissolved in ethanol and treated with one KOH pellet. Stirring was maintained for 30 min, while the reaction mixture turns yellow. A solution of cadmium acetate dihydrate (1 mmol) also in ethanol was added under continuous stirring and under slight warming to 60 °C. After 3 h a yellow solid was formed. This solid was filtered-off, washed with small portions of cool ethanol and dried at room conditions. Yellow crystals of the complex, suitable for X-ray analysis, were obtained by recrystallization from a 2:1 mixture of acetone and dimethylformamide.

Refinement top

H atoms attached to C atoms were positioned with idealized geometry and were refined isotropic with Ueq(H) set to 1.2 times of the Ueq(C) for the aromatic and 1.5 times of the Ueq(C) for methyl H atoms using a riding model with C—H = 0.93 Å and C—H = 0.96 Å, respectively. H atoms attached to N atoms were located in difference Fourier maps. Their positional and isotropic displacement parameters were refined.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. : The crystal structure of the title compound showing the molecules connected through N—H···S interactions and building a one-dimensional H-bonded polymer along the (0 1 1) direction. Hydrogen bonding is indicated as dashed lines and the figure is simplified for clarity. Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) -x, -y, -z.
Bis{4-phenyl-1-[1-(pyridin-2-yl-κN)ethylidene]thiosemicarbazidato- κ2N1,S}cadmium top
Crystal data top
[Cd(C14H13N4S)2]Z = 2
Mr = 651.09F(000) = 660
Triclinic, P1Dx = 1.543 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8452 (2) ÅCell parameters from 5467 reflections
b = 13.0116 (3) Åθ = 2.3–23.9°
c = 13.1736 (5) ŵ = 0.96 mm1
α = 116.495 (1)°T = 296 K
β = 105.757 (1)°Block, yellow
γ = 96.122 (1)°0.22 × 0.14 × 0.11 mm
V = 1401.81 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8199 independent reflections
Radiation source: fine-focus sealed tube5975 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 30.1°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.816, Tmax = 0.902k = 1817
29421 measured reflectionsl = 1618
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0314P)2 + 0.0548P]
where P = (Fo2 + 2Fc2)/3
8199 reflections(Δ/σ)max = 0.001
362 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cd(C14H13N4S)2]γ = 96.122 (1)°
Mr = 651.09V = 1401.81 (7) Å3
Triclinic, P1Z = 2
a = 9.8452 (2) ÅMo Kα radiation
b = 13.0116 (3) ŵ = 0.96 mm1
c = 13.1736 (5) ÅT = 296 K
α = 116.495 (1)°0.22 × 0.14 × 0.11 mm
β = 105.757 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8199 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
5975 reflections with I > 2σ(I)
Tmin = 0.816, Tmax = 0.902Rint = 0.044
29421 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.75 e Å3
8199 reflectionsΔρmin = 0.49 e Å3
362 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.226151 (19)0.208486 (15)0.431225 (15)0.03261 (6)
S10.04751 (7)0.34127 (6)0.45863 (5)0.03845 (15)
S20.11139 (7)0.07311 (6)0.19832 (6)0.04311 (16)
C10.2081 (3)0.0380 (2)0.5482 (2)0.0349 (5)
C50.3030 (3)0.0431 (2)0.3973 (3)0.0542 (7)
H40.33890.03630.34150.065*
C20.1985 (3)0.0638 (2)0.5583 (3)0.0468 (7)
H10.16240.06950.61450.056*
C30.2432 (4)0.1567 (3)0.4838 (3)0.0582 (8)
H20.23600.22610.48860.070*
C40.2977 (4)0.1462 (3)0.4035 (3)0.0622 (9)
H30.33060.20710.35410.075*
C80.0828 (3)0.3844 (2)0.6114 (2)0.0319 (5)
C60.1612 (3)0.1410 (2)0.6249 (2)0.0334 (5)
C90.0826 (3)0.5625 (2)0.8007 (2)0.0356 (5)
C100.0613 (3)0.6755 (2)0.8373 (2)0.0436 (6)
H90.04000.70260.78180.052*
C140.1168 (4)0.5245 (3)0.8844 (2)0.0536 (8)
H130.13250.44950.86180.064*
C70.1277 (4)0.1484 (3)0.7318 (3)0.0550 (8)
H50.21320.14890.78870.083*
H60.04950.08070.70500.083*
H70.09890.22010.77040.083*
C120.1050 (3)0.7096 (3)1.0382 (2)0.0526 (7)
H110.11240.75841.11790.063*
C110.0713 (3)0.7478 (2)0.9550 (2)0.0521 (7)
H100.05510.82290.97820.063*
C130.1275 (4)0.5989 (3)1.0025 (3)0.0610 (8)
H120.15050.57301.05890.073*
N20.1521 (2)0.22010 (16)0.59191 (17)0.0324 (4)
N40.0634 (3)0.49398 (19)0.67666 (19)0.0402 (5)
N30.1191 (2)0.32216 (17)0.66504 (17)0.0348 (4)
N10.2593 (2)0.04738 (17)0.46709 (19)0.0399 (5)
C220.2505 (3)0.1299 (2)0.1648 (2)0.0337 (5)
C200.5236 (3)0.3367 (2)0.4314 (2)0.0334 (5)
C150.5532 (3)0.3897 (2)0.5636 (2)0.0340 (5)
C230.3274 (3)0.0925 (2)0.0112 (2)0.0405 (6)
C240.3295 (3)0.0091 (3)0.1097 (2)0.0503 (7)
H220.26530.08180.13760.060*
C160.6781 (3)0.4789 (2)0.6492 (2)0.0489 (7)
H140.74630.50800.62500.059*
C280.4211 (3)0.1993 (3)0.0278 (3)0.0581 (8)
H260.41930.26830.09270.070*
C190.4774 (3)0.3928 (2)0.7153 (2)0.0489 (7)
H170.40830.36340.73850.059*
C180.5999 (3)0.4811 (3)0.8043 (3)0.0600 (8)
H160.61330.51060.88600.072*
C170.7008 (3)0.5246 (3)0.7713 (3)0.0642 (9)
H150.78450.58450.83000.077*
C250.4256 (4)0.0030 (4)0.1660 (3)0.0688 (10)
H230.42620.07150.23200.083*
C270.5184 (4)0.2041 (4)0.0295 (3)0.0795 (11)
H250.58270.27640.00260.095*
C260.5200 (4)0.1022 (4)0.1263 (3)0.0835 (12)
H240.58580.10540.16440.100*
N60.3994 (2)0.25909 (17)0.35954 (17)0.0327 (4)
N50.4528 (2)0.34715 (18)0.59691 (18)0.0389 (5)
N70.3738 (2)0.21135 (18)0.23768 (18)0.0374 (5)
N80.2265 (3)0.0800 (2)0.0431 (2)0.0429 (5)
C210.6341 (3)0.3730 (2)0.3876 (3)0.0480 (7)
H180.60290.32370.30100.072*
H190.72660.36390.42530.072*
H200.64400.45480.40810.072*
H80.041 (3)0.531 (2)0.639 (2)0.035 (7)*
H210.152 (3)0.024 (2)0.002 (2)0.042 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03545 (10)0.03298 (10)0.03154 (10)0.00908 (7)0.01550 (7)0.01576 (8)
S10.0509 (4)0.0407 (3)0.0317 (3)0.0229 (3)0.0181 (3)0.0201 (3)
S20.0417 (4)0.0439 (4)0.0312 (3)0.0027 (3)0.0145 (3)0.0108 (3)
C10.0361 (13)0.0341 (13)0.0347 (13)0.0098 (10)0.0081 (11)0.0196 (11)
C50.071 (2)0.0504 (17)0.0535 (18)0.0301 (15)0.0326 (16)0.0266 (15)
C20.0517 (17)0.0423 (15)0.0526 (17)0.0155 (13)0.0159 (14)0.0295 (14)
C30.070 (2)0.0413 (16)0.067 (2)0.0229 (15)0.0158 (17)0.0325 (16)
C40.076 (2)0.0465 (17)0.065 (2)0.0355 (17)0.0270 (18)0.0236 (16)
C80.0342 (13)0.0356 (12)0.0323 (12)0.0132 (10)0.0161 (10)0.0190 (11)
C60.0325 (13)0.0377 (13)0.0355 (13)0.0118 (10)0.0128 (10)0.0217 (11)
C90.0387 (14)0.0384 (13)0.0318 (13)0.0139 (11)0.0160 (11)0.0164 (11)
C100.0548 (17)0.0375 (14)0.0387 (15)0.0139 (12)0.0167 (13)0.0188 (12)
C140.083 (2)0.0494 (17)0.0436 (16)0.0323 (16)0.0317 (16)0.0268 (14)
C70.077 (2)0.0605 (18)0.0552 (18)0.0314 (16)0.0366 (17)0.0407 (16)
C120.0600 (19)0.0539 (18)0.0330 (15)0.0100 (15)0.0200 (14)0.0120 (14)
C110.0620 (19)0.0373 (15)0.0437 (16)0.0114 (13)0.0199 (14)0.0092 (13)
C130.089 (3)0.066 (2)0.0376 (16)0.0265 (18)0.0281 (16)0.0293 (16)
N20.0367 (11)0.0310 (10)0.0342 (11)0.0130 (9)0.0156 (9)0.0176 (9)
N40.0582 (15)0.0395 (12)0.0352 (12)0.0258 (11)0.0220 (11)0.0227 (11)
N30.0424 (12)0.0341 (11)0.0337 (11)0.0164 (9)0.0181 (9)0.0177 (9)
N10.0485 (13)0.0358 (11)0.0429 (12)0.0161 (10)0.0226 (10)0.0210 (10)
C220.0372 (13)0.0355 (13)0.0295 (12)0.0119 (11)0.0142 (10)0.0151 (11)
C200.0298 (12)0.0322 (12)0.0374 (13)0.0096 (10)0.0113 (10)0.0167 (11)
C150.0286 (12)0.0319 (12)0.0383 (14)0.0100 (10)0.0085 (10)0.0164 (11)
C230.0376 (14)0.0546 (16)0.0310 (13)0.0150 (12)0.0143 (11)0.0208 (12)
C240.0570 (18)0.0598 (18)0.0364 (15)0.0242 (15)0.0189 (13)0.0225 (14)
C160.0342 (14)0.0499 (16)0.0455 (16)0.0017 (12)0.0088 (12)0.0151 (14)
C280.066 (2)0.0600 (19)0.0418 (16)0.0029 (16)0.0255 (15)0.0190 (15)
C190.0475 (17)0.0543 (17)0.0359 (15)0.0064 (13)0.0106 (13)0.0193 (13)
C180.0511 (18)0.070 (2)0.0342 (15)0.0070 (16)0.0053 (14)0.0136 (15)
C170.0414 (17)0.068 (2)0.0418 (17)0.0061 (15)0.0007 (14)0.0074 (16)
C250.062 (2)0.103 (3)0.0435 (18)0.043 (2)0.0279 (17)0.0286 (19)
C270.067 (2)0.099 (3)0.058 (2)0.012 (2)0.0248 (18)0.034 (2)
C260.062 (2)0.142 (4)0.050 (2)0.024 (3)0.0331 (19)0.043 (2)
N60.0313 (11)0.0344 (10)0.0318 (11)0.0082 (9)0.0121 (9)0.0156 (9)
N50.0353 (11)0.0407 (12)0.0343 (12)0.0056 (9)0.0088 (9)0.0164 (10)
N70.0334 (11)0.0444 (12)0.0315 (11)0.0061 (9)0.0134 (9)0.0164 (10)
N80.0394 (13)0.0470 (13)0.0313 (12)0.0009 (11)0.0133 (10)0.0124 (11)
C210.0370 (15)0.0528 (17)0.0535 (17)0.0046 (12)0.0173 (13)0.0268 (14)
Geometric parameters (Å, º) top
Cd1—N62.3288 (19)C11—H100.9300
Cd1—N22.3691 (18)C13—H120.9300
Cd1—N12.381 (2)N2—N31.385 (2)
Cd1—N52.446 (2)N4—H80.84 (2)
Cd1—S12.5778 (6)C22—N71.305 (3)
Cd1—S22.5814 (7)C22—N81.371 (3)
S1—C81.748 (2)C20—N61.291 (3)
S2—C221.738 (2)C20—C151.484 (3)
C1—N11.344 (3)C20—C211.489 (3)
C1—C21.385 (3)C15—N51.346 (3)
C1—C61.487 (3)C15—C161.380 (3)
C5—N11.332 (3)C23—C281.371 (4)
C5—C41.376 (4)C23—C241.386 (3)
C5—H40.9300C23—N81.407 (3)
C2—C31.381 (4)C24—C251.367 (4)
C2—H10.9300C24—H220.9300
C3—C41.360 (4)C16—C171.383 (4)
C3—H20.9300C16—H140.9300
C4—H30.9300C28—C271.383 (4)
C8—N31.311 (3)C28—H260.9300
C8—N41.365 (3)C19—N51.335 (3)
C6—N21.285 (3)C19—C181.373 (4)
C6—C71.498 (3)C19—H170.9300
C9—C141.377 (4)C18—C171.353 (4)
C9—C101.387 (3)C18—H160.9300
C9—N41.413 (3)C17—H150.9300
C10—C111.376 (3)C25—C261.355 (5)
C10—H90.9300C25—H230.9300
C14—C131.383 (4)C27—C261.375 (5)
C14—H130.9300C27—H250.9300
C7—H50.9600C26—H240.9300
C7—H60.9600N6—N71.373 (3)
C7—H70.9600N8—H210.83 (3)
C12—C131.365 (4)C21—H180.9600
C12—C111.373 (4)C21—H190.9600
C12—H110.9300C21—H200.9600
N6—Cd1—N2151.43 (7)N3—N2—Cd1120.07 (13)
N6—Cd1—N1111.91 (7)C8—N4—C9132.0 (2)
N2—Cd1—N167.80 (6)C8—N4—H8116.0 (16)
N6—Cd1—N568.06 (7)C9—N4—H8111.9 (16)
N2—Cd1—N583.38 (7)C8—N3—N2112.35 (18)
N1—Cd1—N594.00 (7)C5—N1—C1118.4 (2)
N6—Cd1—S1113.46 (5)C5—N1—Cd1122.97 (18)
N2—Cd1—S171.90 (5)C1—N1—Cd1117.63 (15)
N1—Cd1—S1134.61 (5)N7—C22—N8115.7 (2)
N5—Cd1—S1101.36 (5)N7—C22—S2129.77 (18)
N6—Cd1—S275.54 (5)N8—C22—S2114.48 (18)
N2—Cd1—S2132.65 (5)N6—C20—C15116.4 (2)
N1—Cd1—S293.71 (5)N6—C20—C21123.3 (2)
N5—Cd1—S2143.06 (5)C15—C20—C21120.3 (2)
S1—Cd1—S298.58 (2)N5—C15—C16121.1 (2)
C8—S1—Cd195.23 (8)N5—C15—C20117.2 (2)
C22—S2—Cd196.70 (8)C16—C15—C20121.7 (2)
N1—C1—C2121.2 (2)C28—C23—C24119.2 (3)
N1—C1—C6116.9 (2)C28—C23—N8123.3 (2)
C2—C1—C6121.9 (2)C24—C23—N8117.5 (2)
N1—C5—C4123.3 (3)C25—C24—C23120.3 (3)
N1—C5—H4118.3C25—C24—H22119.9
C4—C5—H4118.3C23—C24—H22119.9
C3—C2—C1119.0 (3)C15—C16—C17119.3 (3)
C3—C2—H1120.5C15—C16—H14120.3
C1—C2—H1120.5C17—C16—H14120.3
C4—C3—C2119.8 (3)C23—C28—C27119.9 (3)
C4—C3—H2120.1C23—C28—H26120.1
C2—C3—H2120.1C27—C28—H26120.1
C3—C4—C5118.2 (3)N5—C19—C18123.1 (3)
C3—C4—H3120.9N5—C19—H17118.5
C5—C4—H3120.9C18—C19—H17118.5
N3—C8—N4119.1 (2)C17—C18—C19118.8 (3)
N3—C8—S1127.34 (17)C17—C18—H16120.6
N4—C8—S1113.48 (17)C19—C18—H16120.6
N2—C6—C1115.1 (2)C18—C17—C16119.3 (3)
N2—C6—C7124.1 (2)C18—C17—H15120.3
C1—C6—C7120.7 (2)C16—C17—H15120.3
C14—C9—C10119.0 (2)C26—C25—C24120.6 (3)
C14—C9—N4125.1 (2)C26—C25—H23119.7
C10—C9—N4115.9 (2)C24—C25—H23119.7
C11—C10—C9120.7 (3)C26—C27—C28120.0 (3)
C11—C10—H9119.7C26—C27—H25120.0
C9—C10—H9119.7C28—C27—H25120.0
C9—C14—C13119.5 (3)C25—C26—C27120.0 (3)
C9—C14—H13120.3C25—C26—H24120.0
C13—C14—H13120.3C27—C26—H24120.0
C6—C7—H5109.5C20—N6—N7115.53 (19)
C6—C7—H6109.5C20—N6—Cd1122.35 (16)
H5—C7—H6109.5N7—N6—Cd1122.07 (14)
C6—C7—H7109.5C19—N5—C15118.3 (2)
H5—C7—H7109.5C19—N5—Cd1125.71 (18)
H6—C7—H7109.5C15—N5—Cd1115.53 (15)
C13—C12—C11119.2 (3)C22—N7—N6115.70 (19)
C13—C12—H11120.4C22—N8—C23127.6 (2)
C11—C12—H11120.4C22—N8—H21114.8 (18)
C12—C11—C10120.2 (3)C23—N8—H21115.6 (18)
C12—C11—H10119.9C20—C21—H18109.5
C10—C11—H10119.9C20—C21—H19109.5
C12—C13—C14121.5 (3)H18—C21—H19109.5
C12—C13—H12119.3C20—C21—H20109.5
C14—C13—H12119.3H18—C21—H20109.5
C6—N2—N3117.64 (19)H19—C21—H20109.5
C6—N2—Cd1121.55 (15)
N6—Cd1—S1—C8124.64 (10)N6—Cd1—N1—C1155.39 (17)
N2—Cd1—S1—C825.28 (9)N2—Cd1—N1—C16.27 (17)
N1—Cd1—S1—C853.53 (11)N5—Cd1—N1—C187.45 (18)
N5—Cd1—S1—C853.81 (10)S1—Cd1—N1—C122.8 (2)
S2—Cd1—S1—C8157.47 (8)S2—Cd1—N1—C1128.71 (17)
N6—Cd1—S2—C222.87 (9)Cd1—S2—C22—N72.4 (2)
N2—Cd1—S2—C22177.49 (10)Cd1—S2—C22—N8178.32 (17)
N1—Cd1—S2—C22114.55 (10)N6—C20—C15—N54.1 (3)
N5—Cd1—S2—C2212.87 (12)C21—C20—C15—N5175.7 (2)
S1—Cd1—S2—C22109.27 (8)N6—C20—C15—C16176.0 (2)
N1—C1—C2—C30.3 (4)C21—C20—C15—C164.3 (4)
C6—C1—C2—C3179.7 (2)C28—C23—C24—C251.0 (4)
C1—C2—C3—C41.0 (4)N8—C23—C24—C25179.6 (3)
C2—C3—C4—C51.6 (5)N5—C15—C16—C170.4 (4)
N1—C5—C4—C31.0 (5)C20—C15—C16—C17179.6 (2)
Cd1—S1—C8—N331.2 (2)C24—C23—C28—C271.3 (5)
Cd1—S1—C8—N4151.43 (17)N8—C23—C28—C27179.3 (3)
N1—C1—C6—N211.0 (3)N5—C19—C18—C170.2 (5)
C2—C1—C6—N2168.4 (2)C19—C18—C17—C160.1 (5)
N1—C1—C6—C7169.2 (2)C15—C16—C17—C180.1 (5)
C2—C1—C6—C711.4 (4)C23—C24—C25—C260.1 (5)
C14—C9—C10—C111.3 (4)C23—C28—C27—C260.7 (5)
N4—C9—C10—C11177.3 (3)C24—C25—C26—C270.8 (6)
C10—C9—C14—C130.7 (4)C28—C27—C26—C250.4 (6)
N4—C9—C14—C13177.7 (3)C15—C20—N6—N7179.82 (18)
C13—C12—C11—C100.4 (5)C21—C20—N6—N70.4 (3)
C9—C10—C11—C121.1 (4)C15—C20—N6—Cd12.1 (3)
C11—C12—C13—C140.1 (5)C21—C20—N6—Cd1178.17 (17)
C9—C14—C13—C120.0 (5)N2—Cd1—N6—C206.2 (3)
C1—C6—N2—N3175.47 (19)N1—Cd1—N6—C2089.70 (19)
C7—C6—N2—N34.7 (4)N5—Cd1—N6—C204.35 (17)
C1—C6—N2—Cd15.3 (3)S1—Cd1—N6—C2088.90 (18)
C7—C6—N2—Cd1174.9 (2)S2—Cd1—N6—C20177.89 (19)
N6—Cd1—N2—C695.5 (2)N2—Cd1—N6—N7176.23 (14)
N1—Cd1—N2—C60.13 (18)N1—Cd1—N6—N792.71 (17)
N5—Cd1—N2—C697.20 (19)N5—Cd1—N6—N7178.06 (18)
S1—Cd1—N2—C6158.52 (19)S1—Cd1—N6—N788.69 (16)
S2—Cd1—N2—C673.6 (2)S2—Cd1—N6—N74.52 (15)
N6—Cd1—N2—N374.4 (2)C18—C19—N5—C150.1 (4)
N1—Cd1—N2—N3169.78 (18)C18—C19—N5—Cd1171.9 (2)
N5—Cd1—N2—N372.71 (16)C16—C15—N5—C190.4 (4)
S1—Cd1—N2—N331.57 (15)C20—C15—N5—C19179.6 (2)
S2—Cd1—N2—N3116.53 (15)C16—C15—N5—Cd1172.36 (19)
N3—C8—N4—C94.0 (4)C20—C15—N5—Cd17.6 (3)
S1—C8—N4—C9178.4 (2)N6—Cd1—N5—C19178.4 (2)
C14—C9—N4—C85.7 (5)N2—Cd1—N5—C192.5 (2)
C10—C9—N4—C8175.8 (3)N1—Cd1—N5—C1969.6 (2)
N4—C8—N3—N2172.7 (2)S1—Cd1—N5—C1967.5 (2)
S1—C8—N3—N210.1 (3)S2—Cd1—N5—C19171.19 (17)
C6—N2—N3—C8166.8 (2)N6—Cd1—N5—C156.18 (15)
Cd1—N2—N3—C823.0 (2)N2—Cd1—N5—C15174.70 (17)
C4—C5—N1—C10.4 (4)N1—Cd1—N5—C15118.22 (17)
C4—C5—N1—Cd1168.1 (2)S1—Cd1—N5—C15104.72 (16)
C2—C1—N1—C51.0 (4)S2—Cd1—N5—C1516.6 (2)
C6—C1—N1—C5179.6 (2)N8—C22—N7—N6178.4 (2)
C2—C1—N1—Cd1168.07 (19)S2—C22—N7—N60.8 (3)
C6—C1—N1—Cd111.3 (3)C20—N6—N7—C22177.8 (2)
N6—Cd1—N1—C536.1 (2)Cd1—N6—N7—C224.5 (3)
N2—Cd1—N1—C5174.8 (2)N7—C22—N8—C2310.8 (4)
N5—Cd1—N1—C5104.0 (2)S2—C22—N8—C23168.6 (2)
S1—Cd1—N1—C5145.7 (2)C28—C23—N8—C2244.0 (4)
S2—Cd1—N1—C539.8 (2)C24—C23—N8—C22136.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H8···S1i0.84 (2)2.60 (3)3.437 (2)172 (2)
N8—H21···S2ii0.83 (3)2.79 (3)3.513 (2)147 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z.

Experimental details

Crystal data
Chemical formula[Cd(C14H13N4S)2]
Mr651.09
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.8452 (2), 13.0116 (3), 13.1736 (5)
α, β, γ (°)116.495 (1), 105.757 (1), 96.122 (1)
V3)1401.81 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.22 × 0.14 × 0.11
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.816, 0.902
No. of measured, independent and
observed [I > 2σ(I)] reflections
29421, 8199, 5975
Rint0.044
(sin θ/λ)max1)0.705
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.080, 1.06
No. of reflections8199
No. of parameters362
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.75, 0.49

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H8···S1i0.84 (2)2.60 (3)3.437 (2)172 (2)
N8—H21···S2ii0.83 (3)2.79 (3)3.513 (2)147 (2)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z.
 

Acknowledgements

We gratefully thank Professor Dr Manfredo Hörner (Federal University of Santa Maria, Brazil) for his help and support with the X-ray measurements. We also acknowledge the financial support through the DECIT/SCTIE-MS-CNPq-FAPERGS-Pronem-# 11/2029–1 and PRONEX-CNPq-FAPERGS projects.

References

First citationAli, M. A., Mirza, A. H., Nazimuddin, M., Rahman, H. & Butcher, R. J. (2002). Transition Met. Chem. 27, 268–273.  CAS Google Scholar
First citationAlomar, K., Landreau, A., Kempf, M., Kahn, M. A., Allain, M. & Bouet, G. (2010). J. Inorg. Biochem. 104, 397–404.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaim, W. & Schwederski, B. (1995). Bioanorganische Chemie: zur Funktion chemischer Elemente in Lebensprozessen, 2nd ed. Stuttgart: B. G. Teubner.  Google Scholar
First citationKovala-Demertzi, D., Gangadharmath, U., Demertzis, M. A. & Sanakis, Y. (2005). Inorg. Chem. Commun. 8, 619–622.  CAS Google Scholar
First citationOffiong, E. O. & Martelli, S. (1997). Transition Met. Chem. 22, 263–269.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages m635-m636
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds