organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1507

N-(3-Nitro­benzo­yl)benzene­sulfonamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574199, Mangalore, India, and bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287, Darmstadt, Germany
*Correspondence e-mail: gowdabt@yahoo.com

(Received 13 April 2012; accepted 17 April 2012; online 21 April 2012)

In the title compound, C13H10N2O5S, the C=O bond in the —SO2—NH—CO— segment is anti to the meta-nitro group in the benzoyl ring, while the N—C bond has gauche torsions with respect to the S=O bonds. The molecule is twisted at the N atom with a dihedral angle of 79.9 (2)° between the sulfonyl benzene ring and the —SO2—NH—CO— segment. Furthermore, the dihedral angle between the benzeneline rings is 86.9 (2)°. In the structure, the mol­ecules are linked into helical chains along the b axis via N—H⋯O hydrogen bonds.

Related literature

For our studies on the effects of substituents on the structures and other aspects of N-(ar­yl)-amides, see: Gowda et al. (2000[Gowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779-790.], 2007[Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975-o1976.]), of N-(substitutedbenzo­yl)-aryl­sulfonamides, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2750.]), of N-chloro­aryl­amides, see: Jyothi & Gowda (2004[Jyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64-68.]) and of N-bromo­aryl­sulfonamides, see: Usha & Gowda (2006[Usha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351-359.]).

[Scheme 1]

Experimental

Crystal data
  • C13H10N2O5S

  • Mr = 306.29

  • Orthorhombic, P 21 21 21

  • a = 5.1053 (5) Å

  • b = 13.078 (1) Å

  • c = 20.163 (2) Å

  • V = 1346.2 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.26 mm−1

  • T = 293 K

  • 0.48 × 0.12 × 0.12 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with Sapphire CCD Detector

  • Absorption correction: multi-scan CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.884, Tmax = 0.969

  • 4590 measured reflections

  • 2282 independent reflections

  • 1869 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.137

  • S = 1.38

  • 2282 reflections

  • 193 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.32 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 871 Friedel pairs

  • Flack parameter: −0.1 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 (2) 2.05 (2) 2.909 (6) 175 (6)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+2].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Diaryl acylsulfonamides are known as potent antitumor agents against a broad spectrum of human tumor xenografts in nude mice. As part of our studies on the substituent effects on the structures and other aspects of N-(aryl)-amides (Gowda et al., 2000, 2007), N-(substitutedbenzoyl)-arylsulfonamides (Gowda et al., 2009), N-chloroarylsulfonamides (Jyothi & Gowda, 2004) and N-bromoarylsulfonamides (Usha & Gowda, 2006), in the present work, the crystal structure of N-(3-nitrobenzoyl)benzenesulfonamide has been determined (Fig.1).

The conformation of the N—H bond in the C—SO2—NH—C(O) segment is anti to the C=O bond (Fig.1), similar to that observed in N-(3-chlorobenzoyl)benzenesulfonamide (I)(Gowda et al., 2009).

Further, the C=O bond in the segment is anti to the meta-nitro group in the benzoyl ring, while the conformation of the N—C bond in the C—SO2—NH—C(O) segment of the structure has "gauche" torsions with respect to the SO bonds. The molecule is twisted at the N atom with a dihedral angle of 79.9 (2)° between the sulfonyl benzene ring and the C—SO2—NH—C—O segment, compared to the value of 79.6 (1)° in (I).

The dihedral angles between the sulfonyl and the benzoyl benzene rings is 86.9 (2)°, compared to the value of 89.3 (1)° in (I).

The packing of molecules linked by of N—H···O(S) hydrogen bonds (Table 1) is shown in Fig. 2.

Related literature top

For our studies on the effects of substituents on the structures and other aspects of N-(aryl)-amides, see: Gowda et al. (2000, 2007), on N-(substitutedbenzoyl)-arylsulfonamides, see: Gowda et al. (2009), on N-chloroarylamides, see: Jyothi & Gowda (2004) and on N-bromoarylsulfonamides, see: Usha & Gowda (2006).

Experimental top

The title compound was prepared by refluxing a mixture of 3-nitrobenzoic acid, benzene sulfonamide and phosphorous oxy chloride for 5 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered, washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was later reprecipitated by acidifying the filtered solution with dilute HCl. The filtered and dried solid was recrystallized to the constant melting point.

Rod like colourless single crystals of the title compound used in X-ray diffraction studies were obtained from a slow evaporation of the solvent from its toluene solution at room temperature.

Refinement top

The H atom of the NH group was located in a difference map and later restrained to N—H = 0.86 (2) %A. The other H atoms were positioned with idealized geometry using a riding model with C—H = 0.93 Å. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom- labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular packing in the title compound. Hydrogen bonds are shown as dashed lines.
N-(3-Nitrobenzoyl)benzenesulfonamide top
Crystal data top
C13H10N2O5SF(000) = 632
Mr = 306.29Dx = 1.511 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 1855 reflections
a = 5.1053 (5) Åθ = 3.0–27.8°
b = 13.078 (1) ŵ = 0.26 mm1
c = 20.163 (2) ÅT = 293 K
V = 1346.2 (2) Å3Rod, colourless
Z = 40.48 × 0.12 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD Detector
2282 independent reflections
Radiation source: fine-focus sealed tube1869 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Rotation method data acquisition using ω and phi scans.θmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2009)
h = 36
Tmin = 0.884, Tmax = 0.969k = 1511
4590 measured reflectionsl = 2024
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.P)2 + 2.6443P]
where P = (Fo2 + 2Fc2)/3
S = 1.38(Δ/σ)max < 0.001
2282 reflectionsΔρmax = 0.28 e Å3
193 parametersΔρmin = 0.32 e Å3
1 restraintAbsolute structure: Flack (1983), 871 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.1 (2)
Crystal data top
C13H10N2O5SV = 1346.2 (2) Å3
Mr = 306.29Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.1053 (5) ŵ = 0.26 mm1
b = 13.078 (1) ÅT = 293 K
c = 20.163 (2) Å0.48 × 0.12 × 0.12 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with Sapphire CCD Detector
2282 independent reflections
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2009)
1869 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.969Rint = 0.028
4590 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.137Δρmax = 0.28 e Å3
S = 1.38Δρmin = 0.32 e Å3
2282 reflectionsAbsolute structure: Flack (1983), 871 Friedel pairs
193 parametersAbsolute structure parameter: 0.1 (2)
1 restraint
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3551 (11)0.4936 (4)0.9411 (3)0.0341 (12)
C20.3105 (16)0.5680 (5)0.8942 (3)0.0559 (18)
H20.19250.55640.85990.067*
C30.4420 (17)0.6597 (5)0.8985 (4)0.067 (2)
H30.40910.71080.86750.080*
C40.6203 (16)0.6760 (5)0.9478 (4)0.064 (2)
H40.71130.73750.94980.077*
C50.6647 (16)0.6020 (5)0.9941 (4)0.067 (2)
H50.78540.61371.02780.081*
C60.5320 (14)0.5097 (5)0.9915 (3)0.0539 (18)
H60.56200.45951.02330.065*
C70.4855 (12)0.3009 (4)0.8392 (3)0.0362 (14)
C80.6560 (12)0.2129 (4)0.8190 (3)0.0351 (13)
C90.6177 (11)0.1146 (4)0.8425 (3)0.0389 (14)
H90.48480.10040.87270.047*
C100.7814 (13)0.0385 (4)0.8202 (3)0.0398 (15)
C110.9833 (13)0.0555 (5)0.7769 (3)0.0456 (16)
H111.09410.00260.76420.055*
C121.0182 (13)0.1533 (4)0.7527 (3)0.0450 (16)
H121.15170.16690.72260.054*
C130.8550 (13)0.2305 (5)0.7732 (3)0.0450 (16)
H130.87790.29600.75620.054*
N10.3859 (10)0.2927 (3)0.9027 (2)0.0383 (12)
H1N0.458 (11)0.256 (4)0.933 (2)0.046*
N20.7308 (14)0.0663 (4)0.8455 (3)0.0612 (18)
O10.0348 (8)0.3898 (3)0.8930 (2)0.0584 (13)
O20.1461 (10)0.3402 (3)1.0022 (2)0.0561 (13)
O30.4341 (9)0.3708 (3)0.8029 (2)0.0504 (11)
O40.9051 (11)0.1293 (4)0.8380 (3)0.0777 (16)
O50.5233 (14)0.0835 (4)0.8715 (4)0.109 (3)
S10.1833 (3)0.37784 (11)0.93608 (8)0.0406 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (3)0.026 (3)0.040 (3)0.003 (2)0.001 (3)0.003 (3)
C20.077 (5)0.043 (4)0.048 (4)0.011 (4)0.011 (4)0.002 (3)
C30.101 (6)0.031 (4)0.069 (5)0.013 (4)0.007 (5)0.012 (3)
C40.076 (5)0.040 (4)0.077 (5)0.016 (4)0.000 (5)0.007 (4)
C50.064 (5)0.060 (5)0.077 (5)0.019 (4)0.024 (4)0.011 (4)
C60.057 (4)0.044 (4)0.060 (4)0.003 (4)0.020 (4)0.005 (3)
C70.045 (4)0.025 (3)0.039 (3)0.007 (3)0.008 (3)0.001 (3)
C80.043 (3)0.029 (3)0.033 (3)0.004 (3)0.003 (3)0.004 (2)
C90.047 (4)0.035 (3)0.034 (3)0.007 (3)0.007 (3)0.003 (3)
C100.052 (4)0.023 (3)0.044 (3)0.006 (3)0.005 (3)0.000 (3)
C110.047 (4)0.042 (4)0.048 (4)0.001 (3)0.010 (3)0.013 (3)
C120.046 (4)0.043 (4)0.046 (3)0.008 (3)0.018 (3)0.003 (3)
C130.049 (4)0.046 (4)0.041 (3)0.016 (3)0.001 (3)0.001 (3)
N10.047 (3)0.027 (2)0.041 (3)0.007 (2)0.000 (2)0.005 (2)
N20.089 (6)0.038 (3)0.057 (4)0.012 (3)0.019 (4)0.002 (3)
O10.040 (2)0.048 (3)0.087 (3)0.000 (2)0.012 (2)0.016 (3)
O20.074 (3)0.038 (2)0.056 (3)0.007 (2)0.022 (3)0.002 (2)
O30.065 (3)0.040 (2)0.046 (2)0.005 (2)0.005 (2)0.012 (2)
O40.111 (4)0.047 (3)0.074 (3)0.029 (4)0.020 (3)0.007 (3)
O50.123 (6)0.045 (3)0.160 (6)0.004 (3)0.088 (5)0.019 (3)
S10.0403 (8)0.0314 (7)0.0502 (8)0.0042 (7)0.0052 (8)0.0019 (7)
Geometric parameters (Å, º) top
C1—C21.376 (8)C8—C131.391 (8)
C1—C61.376 (8)C9—C101.376 (8)
C1—S11.753 (5)C9—H90.9300
C2—C31.377 (9)C10—C111.368 (8)
C2—H20.9300C10—N21.485 (8)
C3—C41.365 (10)C11—C121.381 (8)
C3—H30.9300C11—H110.9300
C4—C51.363 (9)C12—C131.372 (8)
C4—H40.9300C12—H120.9300
C5—C61.386 (9)C13—H130.9300
C5—H50.9300N1—S11.662 (5)
C6—H60.9300N1—H1N0.86 (2)
C7—O31.200 (7)N2—O51.203 (8)
C7—N11.382 (7)N2—O41.222 (7)
C7—C81.499 (8)O1—S11.421 (4)
C8—C91.385 (8)O2—S11.433 (4)
C2—C1—C6120.6 (6)C8—C9—H9120.9
C2—C1—S1119.2 (5)C11—C10—C9123.3 (5)
C6—C1—S1120.2 (5)C11—C10—N2120.0 (6)
C1—C2—C3119.5 (6)C9—C10—N2116.7 (5)
C1—C2—H2120.3C10—C11—C12118.2 (6)
C3—C2—H2120.3C10—C11—H11120.9
C4—C3—C2120.4 (7)C12—C11—H11120.9
C4—C3—H3119.8C13—C12—C11119.7 (6)
C2—C3—H3119.8C13—C12—H12120.1
C5—C4—C3120.0 (7)C11—C12—H12120.1
C5—C4—H4120.0C12—C13—C8121.5 (6)
C3—C4—H4120.0C12—C13—H13119.3
C4—C5—C6120.7 (7)C8—C13—H13119.3
C4—C5—H5119.6C7—N1—S1123.5 (4)
C6—C5—H5119.6C7—N1—H1N123 (4)
C1—C6—C5118.8 (6)S1—N1—H1N111 (4)
C1—C6—H6120.6O5—N2—O4124.7 (6)
C5—C6—H6120.6O5—N2—C10118.4 (6)
O3—C7—N1122.9 (6)O4—N2—C10116.9 (6)
O3—C7—C8123.1 (5)O1—S1—O2120.2 (3)
N1—C7—C8114.0 (5)O1—S1—N1108.3 (3)
C9—C8—C13118.9 (6)O2—S1—N1103.2 (3)
C9—C8—C7122.5 (5)O1—S1—C1109.4 (3)
C13—C8—C7118.6 (5)O2—S1—C1108.0 (3)
C10—C9—C8118.3 (5)N1—S1—C1106.9 (3)
C10—C9—H9120.9
C6—C1—C2—C30.9 (10)C11—C12—C13—C81.0 (10)
S1—C1—C2—C3179.0 (6)C9—C8—C13—C122.0 (9)
C1—C2—C3—C41.7 (12)C7—C8—C13—C12179.9 (5)
C2—C3—C4—C51.5 (12)O3—C7—N1—S10.4 (8)
C3—C4—C5—C60.5 (13)C8—C7—N1—S1177.7 (4)
C2—C1—C6—C50.1 (10)C11—C10—N2—O5164.3 (7)
S1—C1—C6—C5180.0 (6)C9—C10—N2—O515.9 (10)
C4—C5—C6—C10.3 (12)C11—C10—N2—O415.4 (9)
O3—C7—C8—C9147.0 (6)C9—C10—N2—O4164.4 (6)
N1—C7—C8—C931.1 (8)C7—N1—S1—O154.4 (5)
O3—C7—C8—C1331.0 (9)C7—N1—S1—O2177.2 (5)
N1—C7—C8—C13150.9 (5)C7—N1—S1—C163.4 (5)
C13—C8—C9—C100.9 (8)C2—C1—S1—O116.3 (6)
C7—C8—C9—C10178.8 (5)C6—C1—S1—O1163.6 (5)
C8—C9—C10—C111.4 (9)C2—C1—S1—O2148.7 (5)
C8—C9—C10—N2178.8 (5)C6—C1—S1—O231.2 (6)
C9—C10—C11—C122.4 (9)C2—C1—S1—N1100.8 (5)
N2—C10—C11—C12177.8 (6)C6—C1—S1—N179.3 (5)
C10—C11—C12—C131.2 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (2)2.05 (2)2.909 (6)175 (6)
Symmetry code: (i) x+1/2, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC13H10N2O5S
Mr306.29
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)5.1053 (5), 13.078 (1), 20.163 (2)
V3)1346.2 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.48 × 0.12 × 0.12
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with Sapphire CCD Detector
Absorption correctionMulti-scan
CrysAlis RED (Oxford Diffraction, 2009)
Tmin, Tmax0.884, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
4590, 2282, 1869
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.137, 1.38
No. of reflections2282
No. of parameters193
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.32
Absolute structureFlack (1983), 871 Friedel pairs
Absolute structure parameter0.1 (2)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2009), CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.86 (2)2.05 (2)2.909 (6)175 (6)
Symmetry code: (i) x+1/2, y+1/2, z+2.
 

Acknowledgements

BTG thanks the University Grants Commission, Government of India, New Delhi, for a special grant under the UGC–BSR one-time grant to faculty.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o1975–o1976.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2750.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Svoboda, I. & Fuess, H. (2000). Z. Naturforsch. Teil A, 55, 779–790.  CAS Google Scholar
First citationJyothi, K. & Gowda, B. T. (2004). Z. Naturforsch. Teil A, 59, 64–68.  CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsha, K. M. & Gowda, B. T. (2006). J. Chem. Sci. 118, 351–359.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1507
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds