metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyrimidine-κ2N1,N1′)bis­­(thio­cyanato-κN)platinum(II)

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 19 April 2012; accepted 19 April 2012; online 25 April 2012)

In the title complex, [Pt(NCS)2(C8H6N4)], the PtII ion is four-coordinated in a distorted square-planar environment defined by two pyrimidine N atoms derived from a chelating 2,2′-bipyrimidine (bpym) ligand and two mutually cis N atoms from two SCN anions. The thio­cyanate ligands are almost linear, displaying N—C—S bond angles of 178.6 (11) and 173.7 (11)°, and the N atoms are slightly bent coordinated to the Pt atom with Pt—N—C bond angles of 172.7 (9) and 160.4 (10)°. In the crystal, mol­ecules are held together by C—H⋯S hydrogen bonds. Intra­molecular C—H⋯N hydrogen bonds are also observed

Related literature

For the crystal structures of related PtII complexes [PtX2(bpym)] (X = Cl, I or Br), see: Kaim et al. (2002[Kaim, W., Dogan, A., Wanner, M., Klein, A., Tiritiris, I., Schleid, T., Stufkens, D. J., Snoeck, T. L., McInnes, E. J. L., Fiedler, J. & Záliš, S. (2002). Inorg. Chem. 41, 4139-4148.]); Ha (2010[Ha, K. (2010). Z. Kristallogr. New Cryst. Struct. 225, 661-662.], 2011[Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 53-54.]).

[Scheme 1]

Experimental

Crystal data
  • [Pt(NCS)2(C8H6N4)]

  • Mr = 469.42

  • Monoclinic, P 21 /n

  • a = 11.0871 (8) Å

  • b = 9.8779 (7) Å

  • c = 12.8790 (9) Å

  • β = 115.135 (1)°

  • V = 1276.91 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 11.31 mm−1

  • T = 200 K

  • 0.34 × 0.28 × 0.28 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.680, Tmax = 1.000

  • 7611 measured reflections

  • 2467 independent reflections

  • 2179 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.105

  • S = 1.09

  • 2467 reflections

  • 172 parameters

  • H-atom parameters constrained

  • Δρmax = 4.86 e Å−3

  • Δρmin = −1.72 e Å−3

Table 1
Selected bond lengths (Å)

Pt1—N1 2.014 (9)
Pt1—N4 1.999 (8)
Pt1—N5 1.958 (9)
Pt1—N6 2.017 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N5 0.95 2.55 3.053 (15) 114
C8—H8⋯N6 0.95 2.62 3.138 (15) 115
C8—H8⋯S2i 0.95 2.87 3.496 (11) 124
Symmetry code: (i) -x, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Crystal structures of PtII complexes with 2,2'-bipyrimidine (bpym; C8H6N4) and halogen ions, [PtX2(bpym)] (X = Cl, I or Br), have been reported previously (Kaim et al., 2002; Ha, 2010; Ha, 2011).

In the title complex, [Pt(NCS)2(bpym)], the PtII ion is four-coordinated in a distorted square-planar environment defined by two pyrimidine N atoms derived from a chelating bpym ligand and two mutually cis N atoms from two SCN- anions (Fig. 1). The main contribution to the distortion is the tight N1—Pt1—N4 chelate angle of 80.9 (3)°, which results in non-linear trans axes [<N1—Pt1—N6 = 176.2 (4)° and <N4—Pt1—N5 = 174.5 (4)°]. The Pt—N(bpym) and Pt—N(NCS) bond lengths are nearly equivalent [Pt—N: 1.958 (9)–2.017 (11) Å] (Table 1). The thiocyanato ligands are almost linear displaying N—C—S bond angles of 178.6 (11)° and 173.7 (11)°, and the N atoms are slightly bent coordinated to the Pt atom with the Pt—N—C bond angles of 172.7 (9)° and 160.4 (10)°, characteristic of an N-bonded conformation. The nearly planar bpym ligand [maximum deviation = 0.09 (1) Å] is slightly inclined to the least-squares plane of the PtN4 unit [maximum deviation = 0.015 (5) Å], making a dihedral angle of 3.6 (5)°. In the crystal, two complex molecules are assembled by intermolecular C—H···S hydrogen bonds with C···S = 3.496 (11) Å, forming a dimer-type species (Fig. 2, Table 2). Intramolecular C—H···N hydrogen bonds are also observed (Table 2).

Related literature top

For the crystal structures of related PtII complexes [PtX2(bpym)] (X = Cl, I or Br), see: Kaim et al. (2002); Ha (2010, 2011).

Experimental top

To a solution of K2PtCl4 (0.2087 g, 0.503 mmol) in H2O (15 ml) and acetone (15 ml) were added KSCN (0.5071 g, 5.218 mmol) and 2,2'-bipyrimidine (0.0809 g, 0.512 mmol), and refluxed for 3 h. After evaporation of the solvent, the residue was dissolved in CH3CN (20 ml), then filtered through a plug of silica gel (2 cm x 7 cm). The solvent of the eluate was removed in vacuo, the residue was washed with ether, and dried at 323 K, to give an orange powder (0.0686 g). Orange block-like crystals, suitable for X-ray analysis, were obtained by slow evaporation of a CH3CN solution at room temperature.

Refinement top

H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C). The highest peak (4.86 e Å-3) and the deepest hole (-1.72 e Å-3) in the difference Fourier map are located 0.91 Å and 0.79 Å, respectively, from the Pt1 atom.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, with atom numbering. Displacement ellipsoids are drawn at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title complex. Intermolecular C—H···S hydrogen-bonds are shown as dashed lines (see Table 2 for details).
(2,2'-Bipyrimidine-κ2N1,N1')bis(thiocyanato- κN)platinum(II) top
Crystal data top
[Pt(NCS)2(C8H6N4)]F(000) = 872
Mr = 469.42Dx = 2.442 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5056 reflections
a = 11.0871 (8) Åθ = 2.7–26.0°
b = 9.8779 (7) ŵ = 11.31 mm1
c = 12.8790 (9) ÅT = 200 K
β = 115.135 (1)°Block, orange
V = 1276.91 (16) Å30.34 × 0.28 × 0.28 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2467 independent reflections
Radiation source: fine-focus sealed tube2179 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.680, Tmax = 1.000k = 1211
7611 measured reflectionsl = 1512
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.030P)2 + 21.4936P]
where P = (Fo2 + 2Fc2)/3
2467 reflections(Δ/σ)max < 0.001
172 parametersΔρmax = 4.86 e Å3
0 restraintsΔρmin = 1.72 e Å3
Crystal data top
[Pt(NCS)2(C8H6N4)]V = 1276.91 (16) Å3
Mr = 469.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0871 (8) ŵ = 11.31 mm1
b = 9.8779 (7) ÅT = 200 K
c = 12.8790 (9) Å0.34 × 0.28 × 0.28 mm
β = 115.135 (1)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2467 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2179 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 1.000Rint = 0.026
7611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.030P)2 + 21.4936P]
where P = (Fo2 + 2Fc2)/3
2467 reflectionsΔρmax = 4.86 e Å3
172 parametersΔρmin = 1.72 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.16191 (4)0.40380 (4)0.58301 (3)0.04005 (15)
S10.0058 (3)0.6087 (4)0.8261 (3)0.0601 (8)
S20.0260 (3)0.0068 (3)0.6854 (3)0.0519 (7)
N10.2144 (8)0.5882 (9)0.5497 (7)0.0382 (18)
N20.3270 (10)0.6962 (9)0.4524 (8)0.050 (2)
N30.3600 (10)0.4377 (10)0.3743 (8)0.049 (2)
N40.2425 (8)0.3496 (9)0.4767 (7)0.0385 (18)
N50.0853 (9)0.4748 (10)0.6838 (8)0.048 (2)
N60.1173 (10)0.2136 (11)0.6120 (8)0.058 (3)
C10.1920 (10)0.7047 (11)0.5879 (8)0.042 (2)
H10.14560.70780.63520.051*
C20.2375 (11)0.8237 (12)0.5579 (9)0.048 (3)
H20.22140.90910.58350.057*
C30.3061 (12)0.8148 (11)0.4906 (9)0.049 (3)
H30.33900.89500.47110.059*
C40.2822 (10)0.5887 (11)0.4827 (8)0.041 (2)
C50.2989 (10)0.4514 (11)0.4419 (9)0.041 (2)
C60.3601 (12)0.3115 (12)0.3349 (10)0.054 (3)
H60.40170.29730.28480.064*
C70.3040 (13)0.2034 (12)0.3627 (10)0.055 (3)
H70.30420.11610.33170.066*
C80.2465 (11)0.2250 (11)0.4376 (9)0.047 (2)
H80.20970.15110.46150.056*
C90.0462 (10)0.5294 (12)0.7422 (9)0.046 (3)
C100.0757 (10)0.1268 (10)0.6445 (9)0.038 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.0392 (2)0.0493 (3)0.0308 (2)0.00470 (17)0.01392 (16)0.00473 (17)
S10.0539 (17)0.082 (2)0.0512 (17)0.0017 (16)0.0284 (14)0.0038 (16)
S20.0481 (15)0.0567 (17)0.0519 (16)0.0078 (13)0.0222 (13)0.0038 (13)
N10.035 (4)0.052 (5)0.025 (4)0.000 (4)0.010 (3)0.002 (4)
N20.068 (6)0.040 (5)0.051 (5)0.003 (4)0.034 (5)0.000 (4)
N30.059 (6)0.050 (6)0.047 (5)0.002 (4)0.030 (5)0.001 (4)
N40.041 (4)0.043 (5)0.030 (4)0.005 (4)0.014 (4)0.002 (4)
N50.052 (5)0.058 (6)0.040 (5)0.004 (5)0.025 (4)0.007 (4)
N60.062 (6)0.072 (7)0.039 (5)0.018 (5)0.020 (5)0.003 (5)
C10.046 (6)0.045 (6)0.032 (5)0.003 (5)0.013 (4)0.009 (4)
C20.049 (6)0.056 (7)0.032 (5)0.002 (5)0.012 (5)0.008 (5)
C30.062 (7)0.043 (6)0.047 (6)0.012 (5)0.028 (5)0.007 (5)
C40.036 (5)0.055 (6)0.029 (5)0.003 (5)0.011 (4)0.004 (4)
C50.040 (5)0.043 (6)0.040 (6)0.005 (4)0.016 (5)0.000 (4)
C60.066 (7)0.050 (7)0.052 (7)0.003 (6)0.032 (6)0.005 (5)
C70.072 (8)0.044 (6)0.047 (6)0.008 (6)0.021 (6)0.002 (5)
C80.053 (6)0.043 (6)0.043 (6)0.007 (5)0.019 (5)0.002 (5)
C90.043 (6)0.048 (6)0.041 (6)0.006 (5)0.011 (5)0.009 (5)
C100.048 (6)0.028 (5)0.041 (5)0.006 (4)0.023 (5)0.001 (4)
Geometric parameters (Å, º) top
Pt1—N12.014 (9)N5—C91.151 (14)
Pt1—N41.999 (8)N6—C101.135 (13)
Pt1—N51.958 (9)C1—C21.397 (16)
Pt1—N62.017 (11)C1—H10.9500
S1—C91.625 (13)C2—C31.378 (15)
S2—C101.602 (10)C2—H20.9500
N1—C11.316 (13)C3—H30.9500
N1—C41.363 (13)C4—C51.494 (15)
N2—C41.301 (13)C6—C71.359 (17)
N2—C31.328 (14)C6—H60.9500
N3—C51.318 (14)C7—C81.380 (16)
N3—C61.346 (14)C7—H70.9500
N4—C81.338 (13)C8—H80.9500
N4—C51.357 (13)
N5—Pt1—N4174.5 (4)C1—C2—H2120.6
N5—Pt1—N193.6 (4)N2—C3—C2121.3 (11)
N4—Pt1—N180.9 (3)N2—C3—H3119.4
N5—Pt1—N690.1 (4)C2—C3—H3119.4
N4—Pt1—N695.4 (4)N2—C4—N1125.1 (10)
N1—Pt1—N6176.2 (4)N2—C4—C5121.0 (9)
C1—N1—C4118.5 (9)N1—C4—C5113.8 (9)
C1—N1—Pt1126.4 (7)N3—C5—N4125.5 (10)
C4—N1—Pt1115.1 (7)N3—C5—C4120.1 (9)
C4—N2—C3117.4 (9)N4—C5—C4114.4 (9)
C5—N3—C6115.3 (10)N3—C6—C7123.7 (11)
C8—N4—C5117.6 (9)N3—C6—H6118.1
C8—N4—Pt1126.9 (7)C7—C6—H6118.1
C5—N4—Pt1115.5 (7)C6—C7—C8117.5 (11)
C9—N5—Pt1172.7 (9)C6—C7—H7121.3
C10—N6—Pt1160.4 (10)C8—C7—H7121.3
N1—C1—C2118.9 (10)N4—C8—C7120.3 (10)
N1—C1—H1120.5N4—C8—H8119.8
C2—C1—H1120.5C7—C8—H8119.8
C3—C2—C1118.8 (10)N5—C9—S1178.6 (11)
C3—C2—H2120.6N6—C10—S2173.7 (11)
N5—Pt1—N1—C11.9 (8)Pt1—N1—C4—N2178.9 (8)
N4—Pt1—N1—C1177.6 (9)C1—N1—C4—C5178.5 (8)
N5—Pt1—N1—C4176.6 (7)Pt1—N1—C4—C52.8 (10)
N4—Pt1—N1—C43.9 (7)C6—N3—C5—N42.6 (16)
N1—Pt1—N4—C8175.8 (9)C6—N3—C5—C4174.8 (10)
N6—Pt1—N4—C85.2 (9)C8—N4—C5—N31.5 (16)
N1—Pt1—N4—C54.4 (7)Pt1—N4—C5—N3178.3 (9)
N6—Pt1—N4—C5174.5 (7)C8—N4—C5—C4176.0 (9)
N5—Pt1—N6—C105 (3)Pt1—N4—C5—C44.2 (11)
N4—Pt1—N6—C10174 (3)N2—C4—C5—N30.2 (16)
C4—N1—C1—C20.4 (14)N1—C4—C5—N3178.5 (9)
Pt1—N1—C1—C2178.9 (7)N2—C4—C5—N4177.5 (9)
N1—C1—C2—C30.9 (15)N1—C4—C5—N40.9 (13)
C4—N2—C3—C21.2 (17)C5—N3—C6—C71.1 (18)
C1—C2—C3—N21.3 (17)N3—C6—C7—C81.4 (19)
C3—N2—C4—N10.7 (16)C5—N4—C8—C71.3 (15)
C3—N2—C4—C5178.8 (10)Pt1—N4—C8—C7178.9 (8)
C1—N1—C4—N20.3 (15)C6—C7—C8—N42.6 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N50.952.553.053 (15)114
C8—H8···N60.952.623.138 (15)115
C8—H8···S2i0.952.873.496 (11)124
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Pt(NCS)2(C8H6N4)]
Mr469.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)11.0871 (8), 9.8779 (7), 12.8790 (9)
β (°) 115.135 (1)
V3)1276.91 (16)
Z4
Radiation typeMo Kα
µ (mm1)11.31
Crystal size (mm)0.34 × 0.28 × 0.28
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.680, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
7611, 2467, 2179
Rint0.026
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.105, 1.09
No. of reflections2467
No. of parameters172
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.030P)2 + 21.4936P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)4.86, 1.72

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Pt1—N12.014 (9)Pt1—N51.958 (9)
Pt1—N41.999 (8)Pt1—N62.017 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N50.952.553.053 (15)113.5
C8—H8···N60.952.623.138 (15)114.6
C8—H8···S2i0.952.873.496 (11)124.4
Symmetry code: (i) x, y, z+1.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0030747).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2010). Z. Kristallogr. New Cryst. Struct. 225, 661–662.  CAS Google Scholar
First citationHa, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 53–54.  CAS Google Scholar
First citationKaim, W., Dogan, A., Wanner, M., Klein, A., Tiritiris, I., Schleid, T., Stufkens, D. J., Snoeck, T. L., McInnes, E. J. L., Fiedler, J. & Záliš, S. (2002). Inorg. Chem. 41, 4139–4148.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds