organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1484

N′-(2,6-Di­fluoro­benzyl­­idene)pyridine-4-carbohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, and cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India
*Correspondence e-mail: hkfun@usm.my

(Received 5 April 2012; accepted 17 April 2012; online 21 April 2012)

In the title compound, C13H9F2N3O, the pyridine ring forms a dihedral angle of 16.92 (7)° with the benzene ring. In the crystal, mol­ecules are linked via N—H⋯O, C—H⋯O and C—H⋯F, with the same O atom accepting two bonds.

Related literature

For related structures, see: Chen (2006[Chen, S.-K. (2006). Acta Cryst. E62, o5352-o5353.]); Nie et al. (2006[Nie, A., Ghosh, S. & Huang, Z. (2006). Acta Cryst. E62, o1824-o1825.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9F2N3O

  • Mr = 261.23

  • Monoclinic, P 21 /c

  • a = 6.8462 (1) Å

  • b = 24.7903 (5) Å

  • c = 8.3719 (1) Å

  • β = 125.249 (1)°

  • V = 1160.36 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.68 × 0.26 × 0.10 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.923, Tmax = 0.988

  • 22044 measured reflections

  • 4531 independent reflections

  • 3819 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.117

  • S = 1.06

  • 4531 reflections

  • 176 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.88 (2) 2.00 (2) 2.8554 (12) 163.4 (16)
C1—H1A⋯F1ii 0.93 2.54 3.4622 (13) 169
C7—H7A⋯O1i 0.93 2.45 3.2253 (13) 141
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In view of the importance of isoniazid and its various Schiff base derivatives (Chen, 2006; Nie et al., 2006), the synthesis and crystal structure of the title Schiff base is reported.

In the title molecule (Fig. 1), the pyridine ring (N1/C1-C5) forms a dihedral angle of 16.92 (7)° with the benzene ring (C8-C13). Bond lengths (Allen et al., 1987) and angles are within normal ranges and are comparable with related structures (Chen, 2006; Nie et al., 2006).

In the crystal structure, Fig. 2, molecules are linked via intermolecular C1–H1A···F1 and bifurcated N2–H1N2···O1 and C7–H7A···O1 hydrogen bonds (Table 1) into two-dimensional planes parallel to (010).

Related literature top

For related structures, see: Chen (2006); Nie et al. (2006). For standard bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of isoniazid (1.4 g, 0.01 mol) and 2,6-difluorobenzaldehyde (1.4 ml, 0.01 mol) in 15 ml of absolute alcohol containing 2 drops of hydrochloric acid was refluxed for about 3 h. On cooling, the solid was separated, which was then filtered and recrystallized from DMF. The single crystal was grown from DMF by the slow evaporation method. (m.p. > 523 K).

Refinement top

Atom H1N2 was located in a difference Fourier map and refined freely with N2-H1N2 = 0.884 (18) Å. The remaining H atoms were positioned geometrically and refined using a riding model with C–H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed along the a axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.
N'-(2,6-Difluorobenzylidene)pyridine-4-carbohydrazide top
Crystal data top
C13H9F2N3OF(000) = 536
Mr = 261.23Dx = 1.495 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8606 reflections
a = 6.8462 (1) Åθ = 3.1–33.5°
b = 24.7903 (5) ŵ = 0.12 mm1
c = 8.3719 (1) ÅT = 100 K
β = 125.249 (1)°Plate, colourless
V = 1160.36 (3) Å30.68 × 0.26 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4531 independent reflections
Radiation source: fine-focus sealed tube3819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 33.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.923, Tmax = 0.988k = 3838
22044 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.3643P]
where P = (Fo2 + 2Fc2)/3
4531 reflections(Δ/σ)max = 0.001
176 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C13H9F2N3OV = 1160.36 (3) Å3
Mr = 261.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.8462 (1) ŵ = 0.12 mm1
b = 24.7903 (5) ÅT = 100 K
c = 8.3719 (1) Å0.68 × 0.26 × 0.10 mm
β = 125.249 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4531 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3819 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.988Rint = 0.029
22044 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.50 e Å3
4531 reflectionsΔρmin = 0.23 e Å3
176 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.41487 (12)0.82429 (3)0.46332 (9)0.02284 (14)
F20.74397 (12)0.94647 (3)0.06279 (9)0.02428 (15)
O10.88240 (14)0.69293 (3)0.10748 (11)0.01802 (15)
N11.26302 (17)0.60373 (4)0.54592 (13)0.02081 (18)
N20.85867 (15)0.75837 (3)0.07264 (12)0.01533 (15)
N30.73916 (15)0.79285 (3)0.08611 (12)0.01499 (15)
C11.20146 (17)0.69340 (4)0.41379 (14)0.01558 (17)
H1A1.23650.73000.43620.019*
C21.30695 (18)0.65690 (4)0.56804 (15)0.01889 (18)
H2A1.41430.67010.69400.023*
C31.11063 (19)0.58554 (4)0.36284 (16)0.01903 (19)
H3A1.07870.54870.34480.023*
C40.99779 (17)0.61841 (4)0.19868 (15)0.01578 (17)
H4A0.89510.60390.07410.019*
C51.04182 (16)0.67368 (4)0.22471 (13)0.01332 (16)
C60.92010 (16)0.70905 (4)0.04740 (14)0.01366 (16)
C70.71196 (16)0.84069 (4)0.04226 (14)0.01461 (16)
H7A0.77670.84890.08770.018*
C80.58232 (16)0.88247 (4)0.19069 (14)0.01341 (16)
C90.43387 (17)0.87443 (4)0.39305 (14)0.01554 (17)
C100.30493 (19)0.91512 (4)0.52600 (15)0.01971 (19)
H10A0.20630.90790.65940.024*
C110.3256 (2)0.96720 (4)0.45622 (16)0.0218 (2)
H11A0.23820.99500.54410.026*
C120.47472 (19)0.97845 (4)0.25729 (16)0.02061 (19)
H12A0.49141.01340.21070.025*
C130.59696 (17)0.93600 (4)0.13148 (14)0.01623 (17)
H1N20.870 (3)0.7667 (7)0.180 (3)0.034 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0293 (3)0.0157 (3)0.0164 (3)0.0010 (2)0.0091 (3)0.0034 (2)
F20.0308 (3)0.0188 (3)0.0156 (3)0.0007 (2)0.0089 (3)0.0043 (2)
O10.0264 (4)0.0163 (3)0.0134 (3)0.0014 (3)0.0126 (3)0.0004 (2)
N10.0226 (4)0.0217 (4)0.0176 (4)0.0037 (3)0.0113 (3)0.0052 (3)
N20.0211 (4)0.0142 (3)0.0117 (3)0.0042 (3)0.0100 (3)0.0025 (3)
N30.0182 (3)0.0143 (3)0.0135 (3)0.0027 (3)0.0097 (3)0.0029 (3)
C10.0165 (4)0.0160 (4)0.0139 (4)0.0004 (3)0.0086 (3)0.0003 (3)
C20.0183 (4)0.0226 (4)0.0133 (4)0.0022 (3)0.0077 (4)0.0013 (3)
C30.0222 (4)0.0154 (4)0.0204 (5)0.0021 (3)0.0128 (4)0.0037 (3)
C40.0175 (4)0.0146 (4)0.0158 (4)0.0003 (3)0.0100 (3)0.0003 (3)
C50.0154 (4)0.0135 (3)0.0130 (4)0.0014 (3)0.0093 (3)0.0011 (3)
C60.0154 (4)0.0136 (3)0.0127 (4)0.0001 (3)0.0085 (3)0.0004 (3)
C70.0162 (4)0.0149 (4)0.0131 (4)0.0010 (3)0.0086 (3)0.0009 (3)
C80.0155 (4)0.0124 (3)0.0138 (4)0.0007 (3)0.0093 (3)0.0005 (3)
C90.0180 (4)0.0139 (4)0.0149 (4)0.0001 (3)0.0096 (3)0.0009 (3)
C100.0225 (4)0.0199 (4)0.0143 (4)0.0025 (3)0.0092 (4)0.0032 (3)
C110.0269 (5)0.0168 (4)0.0210 (5)0.0048 (3)0.0135 (4)0.0061 (4)
C120.0266 (5)0.0135 (4)0.0224 (5)0.0020 (3)0.0146 (4)0.0015 (3)
C130.0192 (4)0.0146 (4)0.0150 (4)0.0003 (3)0.0099 (3)0.0012 (3)
Geometric parameters (Å, º) top
F1—C91.3488 (11)C4—C51.3928 (13)
F2—C131.3550 (12)C4—H4A0.9300
O1—C61.2334 (11)C5—C61.4963 (13)
N1—C31.3399 (14)C7—C81.4601 (13)
N1—C21.3410 (14)C7—H7A0.9300
N2—C61.3485 (12)C8—C91.3983 (13)
N2—N31.3826 (11)C8—C131.3998 (13)
N2—H1N20.884 (18)C9—C101.3790 (14)
N3—C71.2864 (12)C10—C111.3901 (15)
C1—C21.3897 (14)C10—H10A0.9300
C1—C51.3936 (13)C11—C121.3897 (16)
C1—H1A0.9300C11—H11A0.9300
C2—H2A0.9300C12—C131.3783 (14)
C3—C41.3872 (14)C12—H12A0.9300
C3—H3A0.9300
C3—N1—C2116.95 (9)N2—C6—C5114.91 (8)
C6—N2—N3118.36 (8)N3—C7—C8121.88 (9)
C6—N2—H1N2121.3 (11)N3—C7—H7A119.1
N3—N2—H1N2119.4 (11)C8—C7—H7A119.1
C7—N3—N2113.49 (8)C9—C8—C13114.68 (8)
C2—C1—C5118.26 (9)C9—C8—C7126.14 (8)
C2—C1—H1A120.9C13—C8—C7119.14 (9)
C5—C1—H1A120.9F1—C9—C10117.80 (9)
N1—C2—C1123.84 (9)F1—C9—C8118.65 (8)
N1—C2—H2A118.1C10—C9—C8123.55 (9)
C1—C2—H2A118.1C9—C10—C11118.53 (10)
N1—C3—C4123.81 (9)C9—C10—H10A120.7
N1—C3—H3A118.1C11—C10—H10A120.7
C4—C3—H3A118.1C12—C11—C10121.09 (9)
C3—C4—C5118.45 (9)C12—C11—H11A119.5
C3—C4—H4A120.8C10—C11—H11A119.5
C5—C4—H4A120.8C13—C12—C11117.68 (9)
C4—C5—C1118.67 (9)C13—C12—H12A121.2
C4—C5—C6118.35 (8)C11—C12—H12A121.2
C1—C5—C6122.96 (8)F2—C13—C12118.28 (9)
O1—C6—N2124.30 (9)F2—C13—C8117.29 (8)
O1—C6—C5120.79 (8)C12—C13—C8124.43 (9)
C6—N2—N3—C7172.82 (9)N3—C7—C8—C914.15 (15)
C3—N1—C2—C11.03 (16)N3—C7—C8—C13167.93 (9)
C5—C1—C2—N10.46 (15)C13—C8—C9—F1178.07 (8)
C2—N1—C3—C40.28 (16)C7—C8—C9—F13.93 (15)
N1—C3—C4—C50.99 (15)C13—C8—C9—C101.87 (14)
C3—C4—C5—C11.52 (14)C7—C8—C9—C10176.13 (10)
C3—C4—C5—C6179.93 (9)F1—C9—C10—C11178.93 (9)
C2—C1—C5—C40.85 (14)C8—C9—C10—C111.00 (16)
C2—C1—C5—C6179.18 (9)C9—C10—C11—C120.75 (17)
N3—N2—C6—O12.02 (14)C10—C11—C12—C131.46 (17)
N3—N2—C6—C5178.14 (8)C11—C12—C13—F2179.64 (9)
C4—C5—C6—O134.71 (13)C11—C12—C13—C80.49 (16)
C1—C5—C6—O1143.63 (10)C9—C8—C13—F2178.05 (9)
C4—C5—C6—N2145.45 (9)C7—C8—C13—F23.79 (13)
C1—C5—C6—N236.22 (13)C9—C8—C13—C121.10 (15)
N2—N3—C7—C8177.64 (8)C7—C8—C13—C12177.05 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.88 (2)2.00 (2)2.8554 (12)163.4 (16)
C1—H1A···F1ii0.932.543.4622 (13)169
C7—H7A···O1i0.932.453.2253 (13)141
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC13H9F2N3O
Mr261.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.8462 (1), 24.7903 (5), 8.3719 (1)
β (°) 125.249 (1)
V3)1160.36 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.68 × 0.26 × 0.10
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.923, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
22044, 4531, 3819
Rint0.029
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.117, 1.06
No. of reflections4531
No. of parameters176
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.50, 0.23

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···O1i0.88 (2)2.00 (2)2.8554 (12)163.4 (16)
C1—H1A···F1ii0.93002.54003.4622 (13)169.00
C7—H7A···O1i0.93002.45003.2253 (13)141.00
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

The authors would like to thank Universiti Sains Malaysia (USM) for the Research University Grant (No. 1001/PFIZIK/811160). BN thanks the UGC SAP for financial assistance for the purchase of chemicals. DNS thanks Mangalore University for research facilities.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, S.-K. (2006). Acta Cryst. E62, o5352–o5353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNie, A., Ghosh, S. & Huang, Z. (2006). Acta Cryst. E62, o1824–o1825.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1484
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds