organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1339

2,3,6,7-Tetra­bromo-9-butyl-9H-carbazole

aDepartment of Physics, Idhaya College for Women, Kumbakonam-1, India, bDepartment of Physics, Kunthavai Naachiar Govt. Arts College (W) (Autonomous), Thanjavur-7, India, and cOrganic Materials Lab, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
*Correspondence e-mail: vasuki.arasi@yahoo.com

(Received 3 March 2012; accepted 29 March 2012; online 13 April 2012)

In he title compound, C16H13Br4N, the carbazole skeleton is nearly planar [maximum deviation = 0.026 (4) Å] and makes a dihedral angle of 73.8 (4)° with the butyl chain. The butyl chain adopts a trans conformation. In the crystal, mol­ecules are linked by ππ stacking inter­actions [centroid–centroid distance = 3.559 (2) Å].

Related literature

For general background to carbazole derivatives, see: Uludağ et al. (2011[Uludağ, N., Ateş, M., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, o1428-o1429.]); Zuluaga et al. (2011[Zuluaga, F., Grande, C., Cobo, J. & Glidewell, C. (2011). Acta Cryst. C67, o77-o79.]). For their biological activity, see: Kubicki et al. (2007[Kubicki, M., Prukała, W. & Marciniec, B. (2007). Acta Cryst. C63, o754-o757.]); Lohier et al. (2010[Lohier, J.-F., Caruso, A., Sopková-de Oliveira Santos, J., Lancelot, J.-C. & Rault, S. (2010). Acta Cryst. E66, o1971-o1972.]) and for their applications, see: Thomas et al. (2001[Thomas, K. R. J., Lin, J. T., Tao, Y.-T. & Ko, C.-W. (2001). J. Am. Chem. Soc. 123, 9404-9411.]); Tsuboyama et al. (2003[Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971-12979.]). For related structures, see: Ergün et al. (2010[Ergün, Y., Gündoğdu, C., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, o1634-o1635.]); Saeed et al. (2010[Saeed, A., Kazmi, M., Ameen Samra, S., Irfan, M. & Bolte, M. (2010). Acta Cryst. E66, o2118.]); Chen et al. (2009[Chen, L., Cheng, W., Song, G.-L. & Zhu, H.-J. (2009). Acta Cryst. E65, o574.]); Gagnon & Laliberté (2008[Gagnon, E. & Laliberté, D. (2008). Acta Cryst. E64, o2147.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H13Br4N

  • Mr = 538.91

  • Triclinic, [P \overline 1]

  • a = 8.7127 (4) Å

  • b = 9.5712 (4) Å

  • c = 11.3379 (5) Å

  • α = 87.225 (2)°

  • β = 72.014 (2)°

  • γ = 67.673 (2)°

  • V = 829.30 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 9.70 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.159, Tmax = 0.247

  • 18599 measured reflections

  • 3816 independent reflections

  • 2739 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.092

  • S = 1.05

  • 3816 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −1.03 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). SADABS, APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Carbazole and its derivatives have become quite attractive compounds owing to their applications in pharmacy and molecular electronics. It has been reported that carbazole derivatives possess various biological activities such as antitumor, antioxidative, anti-inflammatory, antimutagenic, anticancer, antibacterial and antifungal activities (Kubicki et al., 2007; Lohier et al., 2010). They also have an important role in the synthesis of indole alkaloids. (Ergün et al., 2010). On the other hand, carbazole and its derivatives are very attractive compounds because of their charge transporting (Saeed et al., 2010), thermal and emission properties. Due to this they are also considered as potential candidates for application in electronic devices, such as organic light-emitting diodes (OLEDs) (Thomas et al., 2001; Kubicki et al., 2007), thin-film transistors and solar cells. Carbazole-based compounds have been widely utilized as the host material for efficient green and red phosphorescent organic light-emitting diodes (PhOLEDs) due to their favorable triplet energies. (Tsuboyama, et al., 2003). The title compound (I), consists of a carbazole skeleton substituted with four bromides at the 2,3,6 and 7 positions and a n-butyl group attached to atom N (Fig.1), where the bond lengths(Allen et al., 1987) and angles are within normal ranges, and generally agree with those found in related structures, 9-Butyl-9H-cabazole [Chen et al., 2009], 1,1'-(9-Octyl-9H-cabazole-3,6-diyl)-diethanone [Saeed et al., 2010], 2,7-Dibromo-9-octyl-9H-cabazole [Gagnon and Laliberté, 2008]. The dihedral angle formed by the least-square planes of the carbazole system and butyl chain is 73.8 (4)°. An examination of the deviations from the least-squares planes through individual rings show that ring A(C1—C6), B(C5—C8/N) and C(C7—C12) are planar [with a maximum deviation of 0.026 (4) Å for atom C3] with dihedral angle of A/B=1.51 (29)°, A/C=2.87 (26)° and B/C=1.70 (29)° are in close agreement with the values that observed in similar structures 9-(4-Nitrophenylsulfonyl)-9H-carbazole [Uludağ et al., 2011], 11-Butyl-3-methoxy-11H-benzo[a]-carbazole [Ergün et al., 2010]. Specifically,the bonds labelled here as C1—C2, C3—C4, C9—10, C11—C12 are shorest bond in the six membered rings, while the C6—C7 bond is the longest C—C bond in the carbazole unit (Zuluaga et al., 2011). The valence angle centred on C13, C14 and C15 are less than 120° [113.4 (3)°, 114.6 (3)° and 113.6 (3)°, respectively] and consequently, the C13—C14 and C15—C16 bonds deviate from the symmetry axis of the central ring of the carbazole system. The torsion angle C6—C5—N—C13= -179.65 (27)° indicates that the butyl chain adopts a trans conformation with respect to C5—N bond. In the crystal, the molecules are linked by π -π stacking interactions.( Cg: N/C5-C8); with Cg–Cgi 3.559 (2) Å, α=0°).

Related literature top

For general background to carbazole derivatives, see: Uludağ et al. (2011); Zuluaga et al. (2011). For their biological activity, see: Kubicki et al. (2007); Lohier et al. (2010) and for their applications, see: Thomas et al. (2001); Tsuboyama et al. (2003). For related structures, see: Ergün et al. (2010); Saeed et al. (2010); Chen et al. (2009); Gagnon & Laliberté (2008). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The title compound was synthesized by treating 2,7-dibromo-9-butyl-9H-carbazole with two equivalents of N-bromosuccinimide in dimethylformamide for 24 hrs. After completion of the reaction, the title compound was obtained by filtration after pouring the reaction mixture into ice-cold water. It was recrystallized from dichloromethane/hexane mixture [Yield: 71%].

Refinement top

All the H atoms were poistioned geometrically and treated as riding on their parent atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H atoms,respectively, and refined using riding model with Uiso(H) =KxUeq(parent C-atom), where K=1.5 for CH3 H atoms and K=1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom numbering and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. ππ stacking interactions. Symmetry code: i: -x,1-y,-z
2,3,6,7-Tetrabromo-9-butyl-9H-carbazole top
Crystal data top
C16H13Br4NZ = 2
Mr = 538.91F(000) = 512
Triclinic, P1Dx = 2.158 Mg m3
a = 8.7127 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.5712 (4) ÅCell parameters from 3816 reflections
c = 11.3379 (5) Åθ = 2.3–27.5°
α = 87.225 (2)°µ = 9.70 mm1
β = 72.014 (2)°T = 293 K
γ = 67.673 (2)°Block, colourless
V = 829.30 (6) Å30.30 × 0.25 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3816 independent reflections
Radiation source: fine-focus sealed tube2739 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω and ϕ scanθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1111
Tmin = 0.159, Tmax = 0.247k = 1212
18599 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.1503P]
where P = (Fo2 + 2Fc2)/3
3816 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 1.03 e Å3
Crystal data top
C16H13Br4Nγ = 67.673 (2)°
Mr = 538.91V = 829.30 (6) Å3
Triclinic, P1Z = 2
a = 8.7127 (4) ÅMo Kα radiation
b = 9.5712 (4) ŵ = 9.70 mm1
c = 11.3379 (5) ÅT = 293 K
α = 87.225 (2)°0.30 × 0.25 × 0.20 mm
β = 72.014 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3816 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2739 reflections with I > 2σ(I)
Tmin = 0.159, Tmax = 0.247Rint = 0.050
18599 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.05Δρmax = 0.45 e Å3
3816 reflectionsΔρmin = 1.03 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.0404 (4)0.8421 (4)0.2274 (3)0.0339 (8)
C130.2397 (4)0.2502 (4)0.2560 (3)0.0367 (9)
H13A0.15410.27050.29920.044*
H13B0.22570.17480.19790.044*
C140.4196 (5)0.1866 (4)0.3490 (3)0.0399 (9)
H14A0.43580.09140.38740.048*
H14B0.50460.16470.30510.048*
C150.4566 (5)0.2883 (4)0.4502 (4)0.0399 (9)
H15A0.37210.31010.49460.048*
H15B0.44060.38360.41210.048*
C160.6373 (6)0.2225 (5)0.5420 (4)0.0609 (12)
H16A0.65190.29300.60340.091*
H16B0.65350.12950.58190.091*
H16C0.72210.20300.49930.091*
Br40.14241 (6)1.05229 (4)0.23930 (4)0.05545 (15)
C10.2321 (4)0.5848 (4)0.0618 (3)0.0327 (8)
H10.19320.68540.09100.039*
C20.3235 (4)0.4702 (4)0.1212 (3)0.0335 (8)
C30.3859 (4)0.3180 (4)0.0743 (3)0.0352 (8)
C40.3534 (4)0.2801 (4)0.0269 (3)0.0322 (8)
H40.39450.17940.05650.039*
C50.2565 (4)0.3966 (4)0.0850 (3)0.0291 (8)
C60.1984 (4)0.5490 (4)0.0424 (3)0.0301 (8)
C70.1094 (4)0.6384 (3)0.1249 (3)0.0293 (7)
C80.1159 (4)0.5363 (4)0.2117 (3)0.0296 (8)
C90.0450 (4)0.5845 (4)0.3070 (3)0.0320 (8)
H90.04980.51560.36440.038*
C100.0330 (4)0.7382 (4)0.3138 (3)0.0329 (8)
C120.0301 (4)0.7926 (4)0.1317 (3)0.0341 (8)
H120.02410.86140.07350.041*
N0.2045 (4)0.3899 (3)0.1862 (3)0.0329 (7)
Br10.35722 (6)0.52290 (5)0.26623 (4)0.05058 (14)
Br20.11763 (6)0.80537 (5)0.44827 (4)0.05302 (15)
Br30.52215 (6)0.16149 (5)0.15025 (4)0.05527 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.0365 (19)0.0273 (17)0.035 (2)0.0103 (14)0.0101 (17)0.0067 (15)
C130.048 (2)0.0304 (18)0.035 (2)0.0173 (16)0.0147 (18)0.0008 (16)
C140.051 (2)0.0328 (19)0.034 (2)0.0114 (16)0.0158 (18)0.0008 (16)
C150.042 (2)0.045 (2)0.035 (2)0.0163 (16)0.0166 (18)0.0065 (17)
C160.050 (3)0.080 (3)0.045 (3)0.022 (2)0.009 (2)0.005 (2)
Br40.0757 (3)0.0309 (2)0.0614 (3)0.01020 (19)0.0373 (2)0.00839 (19)
C10.0383 (19)0.0312 (18)0.028 (2)0.0129 (15)0.0097 (16)0.0024 (15)
C20.0368 (19)0.043 (2)0.024 (2)0.0184 (15)0.0104 (16)0.0041 (16)
C30.039 (2)0.0337 (19)0.033 (2)0.0146 (15)0.0119 (17)0.0107 (16)
C40.0382 (19)0.0265 (17)0.030 (2)0.0112 (14)0.0104 (16)0.0064 (15)
C50.0330 (18)0.0304 (17)0.024 (2)0.0150 (14)0.0054 (15)0.0014 (14)
C60.0320 (18)0.0294 (17)0.027 (2)0.0111 (13)0.0071 (15)0.0046 (14)
C70.0314 (18)0.0302 (17)0.025 (2)0.0108 (14)0.0083 (15)0.0050 (15)
C80.0307 (18)0.0315 (17)0.026 (2)0.0140 (14)0.0061 (15)0.0039 (15)
C90.0376 (19)0.0355 (19)0.025 (2)0.0147 (15)0.0113 (16)0.0007 (15)
C100.0319 (18)0.041 (2)0.025 (2)0.0122 (15)0.0118 (15)0.0089 (16)
C120.0388 (19)0.0325 (18)0.029 (2)0.0122 (15)0.0100 (17)0.0018 (15)
N0.0401 (16)0.0292 (15)0.0285 (18)0.0110 (12)0.0124 (14)0.0014 (12)
Br10.0693 (3)0.0567 (3)0.0358 (3)0.0256 (2)0.0287 (2)0.00626 (19)
Br20.0665 (3)0.0530 (3)0.0447 (3)0.0154 (2)0.0350 (2)0.0109 (2)
Br30.0703 (3)0.0449 (2)0.0528 (3)0.0126 (2)0.0362 (2)0.0171 (2)
Geometric parameters (Å, º) top
C11—C121.386 (5)C1—H10.9300
C11—C101.400 (5)C2—C31.413 (5)
C11—Br41.883 (3)C2—Br11.880 (4)
C13—N1.466 (4)C3—C41.359 (5)
C13—C141.502 (5)C3—Br31.884 (3)
C13—H13A0.9700C4—C51.396 (5)
C13—H13B0.9700C4—H40.9300
C14—C151.507 (5)C5—N1.370 (4)
C14—H14A0.9700C5—C61.405 (4)
C14—H14B0.9700C6—C71.440 (5)
C15—C161.502 (5)C7—C121.382 (5)
C15—H15A0.9700C7—C81.394 (5)
C15—H15B0.9700C8—C91.381 (5)
C16—H16A0.9600C8—N1.386 (4)
C16—H16B0.9600C9—C101.376 (5)
C16—H16C0.9600C9—H90.9300
C1—C21.374 (5)C10—Br21.876 (4)
C1—C61.389 (5)C12—H120.9300
C12—C11—C10120.7 (3)C3—C2—Br1122.0 (3)
C12—C11—Br4118.2 (3)C4—C3—C2121.8 (3)
C10—C11—Br4121.1 (3)C4—C3—Br3118.2 (3)
N—C13—C14113.3 (3)C2—C3—Br3120.0 (3)
N—C13—H13A108.9C3—C4—C5118.1 (3)
C14—C13—H13A108.9C3—C4—H4121.0
N—C13—H13B108.9C5—C4—H4121.0
C14—C13—H13B108.9N—C5—C4129.9 (3)
H13A—C13—H13B107.7N—C5—C6109.0 (3)
C13—C14—C15114.9 (3)C4—C5—C6121.0 (3)
C13—C14—H14A108.6C1—C6—C5119.8 (3)
C15—C14—H14A108.6C1—C6—C7133.6 (3)
C13—C14—H14B108.6C5—C6—C7106.6 (3)
C15—C14—H14B108.6C12—C7—C8120.4 (3)
H14A—C14—H14B107.5C12—C7—C6133.1 (3)
C16—C15—C14113.9 (3)C8—C7—C6106.5 (3)
C16—C15—H15A108.8C9—C8—N129.0 (3)
C14—C15—H15A108.8C9—C8—C7121.8 (3)
C16—C15—H15B108.8N—C8—C7109.2 (3)
C14—C15—H15B108.8C10—C9—C8117.6 (3)
H15A—C15—H15B107.7C10—C9—H9121.2
C15—C16—H16A109.5C8—C9—H9121.2
C15—C16—H16B109.5C9—C10—C11121.3 (3)
H16A—C16—H16B109.5C9—C10—Br2118.1 (3)
C15—C16—H16C109.5C11—C10—Br2120.6 (3)
H16A—C16—H16C109.5C7—C12—C11118.2 (3)
H16B—C16—H16C109.5C7—C12—H12120.9
C2—C1—C6119.4 (3)C11—C12—H12120.9
C2—C1—H1120.3C5—N—C8108.6 (3)
C6—C1—H1120.3C5—N—C13125.1 (3)
C1—C2—C3119.9 (3)C8—N—C13126.2 (3)
C1—C2—Br1118.0 (3)
N—C13—C14—C1562.0 (4)C12—C7—C8—N178.9 (3)
C13—C14—C15—C16179.9 (3)C6—C7—C8—N0.2 (4)
C6—C1—C2—C31.6 (5)N—C8—C9—C10178.2 (3)
C6—C1—C2—Br1177.2 (2)C7—C8—C9—C100.1 (5)
C1—C2—C3—C42.2 (5)C8—C9—C10—C110.0 (5)
Br1—C2—C3—C4176.5 (3)C8—C9—C10—Br2176.4 (3)
C1—C2—C3—Br3176.5 (3)C12—C11—C10—C90.4 (5)
Br1—C2—C3—Br34.7 (4)Br4—C11—C10—C9178.5 (3)
C2—C3—C4—C50.5 (5)C12—C11—C10—Br2176.7 (3)
Br3—C3—C4—C5178.3 (2)Br4—C11—C10—Br22.3 (4)
C3—C4—C5—N179.3 (3)C8—C7—C12—C110.7 (5)
C3—C4—C5—C61.7 (5)C6—C7—C12—C11178.0 (4)
C2—C1—C6—C50.6 (5)C10—C11—C12—C70.8 (5)
C2—C1—C6—C7179.7 (4)Br4—C11—C12—C7178.2 (2)
N—C5—C6—C1178.6 (3)C4—C5—N—C8177.9 (3)
C4—C5—C6—C12.3 (5)C6—C5—N—C81.1 (4)
N—C5—C6—C71.2 (4)C4—C5—N—C131.3 (6)
C4—C5—C6—C7177.9 (3)C6—C5—N—C13179.6 (3)
C1—C6—C7—C122.2 (7)C9—C8—N—C5177.8 (3)
C5—C6—C7—C12178.0 (4)C7—C8—N—C50.6 (4)
C1—C6—C7—C8178.9 (4)C9—C8—N—C131.4 (6)
C5—C6—C7—C80.8 (4)C7—C8—N—C13179.8 (3)
C12—C7—C8—C90.3 (5)C14—C13—N—C581.3 (4)
C6—C7—C8—C9178.7 (3)C14—C13—N—C897.8 (4)

Experimental details

Crystal data
Chemical formulaC16H13Br4N
Mr538.91
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.7127 (4), 9.5712 (4), 11.3379 (5)
α, β, γ (°)87.225 (2), 72.014 (2), 67.673 (2)
V3)829.30 (6)
Z2
Radiation typeMo Kα
µ (mm1)9.70
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.159, 0.247
No. of measured, independent and
observed [I > 2σ(I)] reflections
18599, 3816, 2739
Rint0.050
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.092, 1.05
No. of reflections3816
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 1.03

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors thank the Sophisticated Analytical Instrument Facility, IIT Madras, Chennai, for the single-crystal X-ray data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). SADABS, APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, L., Cheng, W., Song, G.-L. & Zhu, H.-J. (2009). Acta Cryst. E65, o574.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationErgün, Y., Gündoğdu, C., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, o1634–o1635.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGagnon, E. & Laliberté, D. (2008). Acta Cryst. E64, o2147.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKubicki, M., Prukała, W. & Marciniec, B. (2007). Acta Cryst. C63, o754–o757.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLohier, J.-F., Caruso, A., Sopková-de Oliveira Santos, J., Lancelot, J.-C. & Rault, S. (2010). Acta Cryst. E66, o1971–o1972.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSaeed, A., Kazmi, M., Ameen Samra, S., Irfan, M. & Bolte, M. (2010). Acta Cryst. E66, o2118.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThomas, K. R. J., Lin, J. T., Tao, Y.-T. & Ko, C.-W. (2001). J. Am. Chem. Soc. 123, 9404–9411.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationTsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971–12979.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationUludağ, N., Ateş, M., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, o1428–o1429.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZuluaga, F., Grande, C., Cobo, J. & Glidewell, C. (2011). Acta Cryst. C67, o77–o79.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1339
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds