organic compounds
2,3,6,7-Tetrabromo-9-butyl-9H-carbazole
aDepartment of Physics, Idhaya College for Women, Kumbakonam-1, India, bDepartment of Physics, Kunthavai Naachiar Govt. Arts College (W) (Autonomous), Thanjavur-7, India, and cOrganic Materials Lab, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667, India
*Correspondence e-mail: vasuki.arasi@yahoo.com
In he title compound, C16H13Br4N, the carbazole skeleton is nearly planar [maximum deviation = 0.026 (4) Å] and makes a dihedral angle of 73.8 (4)° with the butyl chain. The butyl chain adopts a trans conformation. In the crystal, molecules are linked by π–π stacking interactions [centroid–centroid distance = 3.559 (2) Å].
Related literature
For general background to carbazole derivatives, see: Uludağ et al. (2011); Zuluaga et al. (2011). For their biological activity, see: Kubicki et al. (2007); Lohier et al. (2010) and for their applications, see: Thomas et al. (2001); Tsuboyama et al. (2003). For related structures, see: Ergün et al. (2010); Saeed et al. (2010); Chen et al. (2009); Gagnon & Laliberté (2008). For standard bond lengths, see: Allen et al. (1987).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).
Supporting information
10.1107/S1600536812013761/bx2400sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812013761/bx2400Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812013761/bx2400Isup3.cml
The title compound was synthesized by treating 2,7-dibromo-9-butyl-9H-carbazole with two equivalents of N-bromosuccinimide in dimethylformamide for 24 hrs. After completion of the reaction, the title compound was obtained by filtration after pouring the reaction mixture into ice-cold water. It was recrystallized from dichloromethane/hexane mixture [Yield: 71%].
All the H atoms were poistioned geometrically and treated as riding on their parent atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H atoms,respectively, and refined using riding model with Uiso(H) =KxUeq(parent C-atom), where K=1.5 for CH3 H atoms and K=1.2 for all other H-atoms.
Data collection: APEX2 (Bruker, 2004); cell
APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).C16H13Br4N | Z = 2 |
Mr = 538.91 | F(000) = 512 |
Triclinic, P1 | Dx = 2.158 Mg m−3 |
a = 8.7127 (4) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.5712 (4) Å | Cell parameters from 3816 reflections |
c = 11.3379 (5) Å | θ = 2.3–27.5° |
α = 87.225 (2)° | µ = 9.70 mm−1 |
β = 72.014 (2)° | T = 293 K |
γ = 67.673 (2)° | Block, colourless |
V = 829.30 (6) Å3 | 0.30 × 0.25 × 0.20 mm |
Bruker Kappa APEXII CCD diffractometer | 3816 independent reflections |
Radiation source: fine-focus sealed tube | 2739 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.050 |
ω and ϕ scan | θmax = 27.5°, θmin = 2.3° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −11→11 |
Tmin = 0.159, Tmax = 0.247 | k = −12→12 |
18599 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.038 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0467P)2 + 0.1503P] where P = (Fo2 + 2Fc2)/3 |
3816 reflections | (Δ/σ)max < 0.001 |
190 parameters | Δρmax = 0.45 e Å−3 |
0 restraints | Δρmin = −1.03 e Å−3 |
C16H13Br4N | γ = 67.673 (2)° |
Mr = 538.91 | V = 829.30 (6) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.7127 (4) Å | Mo Kα radiation |
b = 9.5712 (4) Å | µ = 9.70 mm−1 |
c = 11.3379 (5) Å | T = 293 K |
α = 87.225 (2)° | 0.30 × 0.25 × 0.20 mm |
β = 72.014 (2)° |
Bruker Kappa APEXII CCD diffractometer | 3816 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 2739 reflections with I > 2σ(I) |
Tmin = 0.159, Tmax = 0.247 | Rint = 0.050 |
18599 measured reflections |
R[F2 > 2σ(F2)] = 0.038 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.45 e Å−3 |
3816 reflections | Δρmin = −1.03 e Å−3 |
190 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C11 | −0.0404 (4) | 0.8421 (4) | −0.2274 (3) | 0.0339 (8) | |
C13 | 0.2397 (4) | 0.2502 (4) | −0.2560 (3) | 0.0367 (9) | |
H13A | 0.1541 | 0.2705 | −0.2992 | 0.044* | |
H13B | 0.2257 | 0.1748 | −0.1979 | 0.044* | |
C14 | 0.4196 (5) | 0.1866 (4) | −0.3490 (3) | 0.0399 (9) | |
H14A | 0.4358 | 0.0914 | −0.3874 | 0.048* | |
H14B | 0.5046 | 0.1647 | −0.3051 | 0.048* | |
C15 | 0.4566 (5) | 0.2883 (4) | −0.4502 (4) | 0.0399 (9) | |
H15A | 0.3721 | 0.3101 | −0.4946 | 0.048* | |
H15B | 0.4406 | 0.3836 | −0.4121 | 0.048* | |
C16 | 0.6373 (6) | 0.2225 (5) | −0.5420 (4) | 0.0609 (12) | |
H16A | 0.6519 | 0.2930 | −0.6034 | 0.091* | |
H16B | 0.6535 | 0.1295 | −0.5819 | 0.091* | |
H16C | 0.7221 | 0.2030 | −0.4993 | 0.091* | |
Br4 | −0.14241 (6) | 1.05229 (4) | −0.23930 (4) | 0.05545 (15) | |
C1 | 0.2321 (4) | 0.5848 (4) | 0.0618 (3) | 0.0327 (8) | |
H1 | 0.1932 | 0.6854 | 0.0910 | 0.039* | |
C2 | 0.3235 (4) | 0.4702 (4) | 0.1212 (3) | 0.0335 (8) | |
C3 | 0.3859 (4) | 0.3180 (4) | 0.0743 (3) | 0.0352 (8) | |
C4 | 0.3534 (4) | 0.2801 (4) | −0.0269 (3) | 0.0322 (8) | |
H4 | 0.3945 | 0.1794 | −0.0565 | 0.039* | |
C5 | 0.2565 (4) | 0.3966 (4) | −0.0850 (3) | 0.0291 (8) | |
C6 | 0.1984 (4) | 0.5490 (4) | −0.0424 (3) | 0.0301 (8) | |
C7 | 0.1094 (4) | 0.6384 (3) | −0.1249 (3) | 0.0293 (7) | |
C8 | 0.1159 (4) | 0.5363 (4) | −0.2117 (3) | 0.0296 (8) | |
C9 | 0.0450 (4) | 0.5845 (4) | −0.3070 (3) | 0.0320 (8) | |
H9 | 0.0498 | 0.5156 | −0.3644 | 0.038* | |
C10 | −0.0330 (4) | 0.7382 (4) | −0.3138 (3) | 0.0329 (8) | |
C12 | 0.0301 (4) | 0.7926 (4) | −0.1317 (3) | 0.0341 (8) | |
H12 | 0.0241 | 0.8614 | −0.0735 | 0.041* | |
N | 0.2045 (4) | 0.3899 (3) | −0.1862 (3) | 0.0329 (7) | |
Br1 | 0.35722 (6) | 0.52290 (5) | 0.26623 (4) | 0.05058 (14) | |
Br2 | −0.11763 (6) | 0.80537 (5) | −0.44827 (4) | 0.05302 (15) | |
Br3 | 0.52215 (6) | 0.16149 (5) | 0.15025 (4) | 0.05527 (15) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.0365 (19) | 0.0273 (17) | 0.035 (2) | −0.0103 (14) | −0.0101 (17) | 0.0067 (15) |
C13 | 0.048 (2) | 0.0304 (18) | 0.035 (2) | −0.0173 (16) | −0.0147 (18) | 0.0008 (16) |
C14 | 0.051 (2) | 0.0328 (19) | 0.034 (2) | −0.0114 (16) | −0.0158 (18) | −0.0008 (16) |
C15 | 0.042 (2) | 0.045 (2) | 0.035 (2) | −0.0163 (16) | −0.0166 (18) | 0.0065 (17) |
C16 | 0.050 (3) | 0.080 (3) | 0.045 (3) | −0.022 (2) | −0.009 (2) | 0.005 (2) |
Br4 | 0.0757 (3) | 0.0309 (2) | 0.0614 (3) | −0.01020 (19) | −0.0373 (2) | 0.00839 (19) |
C1 | 0.0383 (19) | 0.0312 (18) | 0.028 (2) | −0.0129 (15) | −0.0097 (16) | 0.0024 (15) |
C2 | 0.0368 (19) | 0.043 (2) | 0.024 (2) | −0.0184 (15) | −0.0104 (16) | 0.0041 (16) |
C3 | 0.039 (2) | 0.0337 (19) | 0.033 (2) | −0.0146 (15) | −0.0119 (17) | 0.0107 (16) |
C4 | 0.0382 (19) | 0.0265 (17) | 0.030 (2) | −0.0112 (14) | −0.0104 (16) | 0.0064 (15) |
C5 | 0.0330 (18) | 0.0304 (17) | 0.024 (2) | −0.0150 (14) | −0.0054 (15) | 0.0014 (14) |
C6 | 0.0320 (18) | 0.0294 (17) | 0.027 (2) | −0.0111 (13) | −0.0071 (15) | 0.0046 (14) |
C7 | 0.0314 (18) | 0.0302 (17) | 0.025 (2) | −0.0108 (14) | −0.0083 (15) | 0.0050 (15) |
C8 | 0.0307 (18) | 0.0315 (17) | 0.026 (2) | −0.0140 (14) | −0.0061 (15) | 0.0039 (15) |
C9 | 0.0376 (19) | 0.0355 (19) | 0.025 (2) | −0.0147 (15) | −0.0113 (16) | 0.0007 (15) |
C10 | 0.0319 (18) | 0.041 (2) | 0.025 (2) | −0.0122 (15) | −0.0118 (15) | 0.0089 (16) |
C12 | 0.0388 (19) | 0.0325 (18) | 0.029 (2) | −0.0122 (15) | −0.0100 (17) | 0.0018 (15) |
N | 0.0401 (16) | 0.0292 (15) | 0.0285 (18) | −0.0110 (12) | −0.0124 (14) | 0.0014 (12) |
Br1 | 0.0693 (3) | 0.0567 (3) | 0.0358 (3) | −0.0256 (2) | −0.0287 (2) | 0.00626 (19) |
Br2 | 0.0665 (3) | 0.0530 (3) | 0.0447 (3) | −0.0154 (2) | −0.0350 (2) | 0.0109 (2) |
Br3 | 0.0703 (3) | 0.0449 (2) | 0.0528 (3) | −0.0126 (2) | −0.0362 (2) | 0.0171 (2) |
C11—C12 | 1.386 (5) | C1—H1 | 0.9300 |
C11—C10 | 1.400 (5) | C2—C3 | 1.413 (5) |
C11—Br4 | 1.883 (3) | C2—Br1 | 1.880 (4) |
C13—N | 1.466 (4) | C3—C4 | 1.359 (5) |
C13—C14 | 1.502 (5) | C3—Br3 | 1.884 (3) |
C13—H13A | 0.9700 | C4—C5 | 1.396 (5) |
C13—H13B | 0.9700 | C4—H4 | 0.9300 |
C14—C15 | 1.507 (5) | C5—N | 1.370 (4) |
C14—H14A | 0.9700 | C5—C6 | 1.405 (4) |
C14—H14B | 0.9700 | C6—C7 | 1.440 (5) |
C15—C16 | 1.502 (5) | C7—C12 | 1.382 (5) |
C15—H15A | 0.9700 | C7—C8 | 1.394 (5) |
C15—H15B | 0.9700 | C8—C9 | 1.381 (5) |
C16—H16A | 0.9600 | C8—N | 1.386 (4) |
C16—H16B | 0.9600 | C9—C10 | 1.376 (5) |
C16—H16C | 0.9600 | C9—H9 | 0.9300 |
C1—C2 | 1.374 (5) | C10—Br2 | 1.876 (4) |
C1—C6 | 1.389 (5) | C12—H12 | 0.9300 |
C12—C11—C10 | 120.7 (3) | C3—C2—Br1 | 122.0 (3) |
C12—C11—Br4 | 118.2 (3) | C4—C3—C2 | 121.8 (3) |
C10—C11—Br4 | 121.1 (3) | C4—C3—Br3 | 118.2 (3) |
N—C13—C14 | 113.3 (3) | C2—C3—Br3 | 120.0 (3) |
N—C13—H13A | 108.9 | C3—C4—C5 | 118.1 (3) |
C14—C13—H13A | 108.9 | C3—C4—H4 | 121.0 |
N—C13—H13B | 108.9 | C5—C4—H4 | 121.0 |
C14—C13—H13B | 108.9 | N—C5—C4 | 129.9 (3) |
H13A—C13—H13B | 107.7 | N—C5—C6 | 109.0 (3) |
C13—C14—C15 | 114.9 (3) | C4—C5—C6 | 121.0 (3) |
C13—C14—H14A | 108.6 | C1—C6—C5 | 119.8 (3) |
C15—C14—H14A | 108.6 | C1—C6—C7 | 133.6 (3) |
C13—C14—H14B | 108.6 | C5—C6—C7 | 106.6 (3) |
C15—C14—H14B | 108.6 | C12—C7—C8 | 120.4 (3) |
H14A—C14—H14B | 107.5 | C12—C7—C6 | 133.1 (3) |
C16—C15—C14 | 113.9 (3) | C8—C7—C6 | 106.5 (3) |
C16—C15—H15A | 108.8 | C9—C8—N | 129.0 (3) |
C14—C15—H15A | 108.8 | C9—C8—C7 | 121.8 (3) |
C16—C15—H15B | 108.8 | N—C8—C7 | 109.2 (3) |
C14—C15—H15B | 108.8 | C10—C9—C8 | 117.6 (3) |
H15A—C15—H15B | 107.7 | C10—C9—H9 | 121.2 |
C15—C16—H16A | 109.5 | C8—C9—H9 | 121.2 |
C15—C16—H16B | 109.5 | C9—C10—C11 | 121.3 (3) |
H16A—C16—H16B | 109.5 | C9—C10—Br2 | 118.1 (3) |
C15—C16—H16C | 109.5 | C11—C10—Br2 | 120.6 (3) |
H16A—C16—H16C | 109.5 | C7—C12—C11 | 118.2 (3) |
H16B—C16—H16C | 109.5 | C7—C12—H12 | 120.9 |
C2—C1—C6 | 119.4 (3) | C11—C12—H12 | 120.9 |
C2—C1—H1 | 120.3 | C5—N—C8 | 108.6 (3) |
C6—C1—H1 | 120.3 | C5—N—C13 | 125.1 (3) |
C1—C2—C3 | 119.9 (3) | C8—N—C13 | 126.2 (3) |
C1—C2—Br1 | 118.0 (3) | ||
N—C13—C14—C15 | −62.0 (4) | C12—C7—C8—N | 178.9 (3) |
C13—C14—C15—C16 | 179.9 (3) | C6—C7—C8—N | −0.2 (4) |
C6—C1—C2—C3 | 1.6 (5) | N—C8—C9—C10 | −178.2 (3) |
C6—C1—C2—Br1 | −177.2 (2) | C7—C8—C9—C10 | 0.1 (5) |
C1—C2—C3—C4 | −2.2 (5) | C8—C9—C10—C11 | 0.0 (5) |
Br1—C2—C3—C4 | 176.5 (3) | C8—C9—C10—Br2 | 176.4 (3) |
C1—C2—C3—Br3 | 176.5 (3) | C12—C11—C10—C9 | −0.4 (5) |
Br1—C2—C3—Br3 | −4.7 (4) | Br4—C11—C10—C9 | 178.5 (3) |
C2—C3—C4—C5 | 0.5 (5) | C12—C11—C10—Br2 | −176.7 (3) |
Br3—C3—C4—C5 | −178.3 (2) | Br4—C11—C10—Br2 | 2.3 (4) |
C3—C4—C5—N | −179.3 (3) | C8—C7—C12—C11 | −0.7 (5) |
C3—C4—C5—C6 | 1.7 (5) | C6—C7—C12—C11 | 178.0 (4) |
C2—C1—C6—C5 | 0.6 (5) | C10—C11—C12—C7 | 0.8 (5) |
C2—C1—C6—C7 | −179.7 (4) | Br4—C11—C12—C7 | −178.2 (2) |
N—C5—C6—C1 | 178.6 (3) | C4—C5—N—C8 | −177.9 (3) |
C4—C5—C6—C1 | −2.3 (5) | C6—C5—N—C8 | 1.1 (4) |
N—C5—C6—C7 | −1.2 (4) | C4—C5—N—C13 | 1.3 (6) |
C4—C5—C6—C7 | 177.9 (3) | C6—C5—N—C13 | −179.6 (3) |
C1—C6—C7—C12 | 2.2 (7) | C9—C8—N—C5 | 177.8 (3) |
C5—C6—C7—C12 | −178.0 (4) | C7—C8—N—C5 | −0.6 (4) |
C1—C6—C7—C8 | −178.9 (4) | C9—C8—N—C13 | −1.4 (6) |
C5—C6—C7—C8 | 0.8 (4) | C7—C8—N—C13 | −179.8 (3) |
C12—C7—C8—C9 | 0.3 (5) | C14—C13—N—C5 | −81.3 (4) |
C6—C7—C8—C9 | −178.7 (3) | C14—C13—N—C8 | 97.8 (4) |
Experimental details
Crystal data | |
Chemical formula | C16H13Br4N |
Mr | 538.91 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.7127 (4), 9.5712 (4), 11.3379 (5) |
α, β, γ (°) | 87.225 (2), 72.014 (2), 67.673 (2) |
V (Å3) | 829.30 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 9.70 |
Crystal size (mm) | 0.30 × 0.25 × 0.20 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.159, 0.247 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18599, 3816, 2739 |
Rint | 0.050 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.038, 0.092, 1.05 |
No. of reflections | 3816 |
No. of parameters | 190 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.45, −1.03 |
Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), PLATON (Spek, 2009).
Acknowledgements
The authors thank the Sophisticated Analytical Instrument Facility, IIT Madras, Chennai, for the single-crystal X-ray data collection.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Bruker (2004). SADABS, APEX2, SAINT and XPREP, Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, L., Cheng, W., Song, G.-L. & Zhu, H.-J. (2009). Acta Cryst. E65, o574. Web of Science CSD CrossRef IUCr Journals Google Scholar
Ergün, Y., Gündoğdu, C., Tercan, B., Ermiş, E. & Hökelek, T. (2010). Acta Cryst. E66, o1634–o1635. Web of Science CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Gagnon, E. & Laliberté, D. (2008). Acta Cryst. E64, o2147. Web of Science CSD CrossRef IUCr Journals Google Scholar
Kubicki, M., Prukała, W. & Marciniec, B. (2007). Acta Cryst. C63, o754–o757. Web of Science CSD CrossRef IUCr Journals Google Scholar
Lohier, J.-F., Caruso, A., Sopková-de Oliveira Santos, J., Lancelot, J.-C. & Rault, S. (2010). Acta Cryst. E66, o1971–o1972. Web of Science CSD CrossRef IUCr Journals Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Saeed, A., Kazmi, M., Ameen Samra, S., Irfan, M. & Bolte, M. (2010). Acta Cryst. E66, o2118. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Thomas, K. R. J., Lin, J. T., Tao, Y.-T. & Ko, C.-W. (2001). J. Am. Chem. Soc. 123, 9404–9411. Web of Science CSD CrossRef PubMed CAS Google Scholar
Tsuboyama, A., Iwawaki, H., Furugori, M., Mukaide, T., Kamatani, J., Igawa, S., Moriyama, T., Miura, S., Takiguchi, T., Okada, S., Hoshino, M. & Ueno, K. (2003). J. Am. Chem. Soc. 125, 12971–12979. Web of Science CSD CrossRef PubMed CAS Google Scholar
Uludağ, N., Ateş, M., Tercan, B. & Hökelek, T. (2011). Acta Cryst. E67, o1428–o1429. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zuluaga, F., Grande, C., Cobo, J. & Glidewell, C. (2011). Acta Cryst. C67, o77–o79. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Carbazole and its derivatives have become quite attractive compounds owing to their applications in pharmacy and molecular electronics. It has been reported that carbazole derivatives possess various biological activities such as antitumor, antioxidative, anti-inflammatory, antimutagenic, anticancer, antibacterial and antifungal activities (Kubicki et al., 2007; Lohier et al., 2010). They also have an important role in the synthesis of indole alkaloids. (Ergün et al., 2010). On the other hand, carbazole and its derivatives are very attractive compounds because of their charge transporting (Saeed et al., 2010), thermal and emission properties. Due to this they are also considered as potential candidates for application in electronic devices, such as organic light-emitting diodes (OLEDs) (Thomas et al., 2001; Kubicki et al., 2007), thin-film transistors and solar cells. Carbazole-based compounds have been widely utilized as the host material for efficient green and red phosphorescent organic light-emitting diodes (PhOLEDs) due to their favorable triplet energies. (Tsuboyama, et al., 2003). The title compound (I), consists of a carbazole skeleton substituted with four bromides at the 2,3,6 and 7 positions and a n-butyl group attached to atom N (Fig.1), where the bond lengths(Allen et al., 1987) and angles are within normal ranges, and generally agree with those found in related structures, 9-Butyl-9H-cabazole [Chen et al., 2009], 1,1'-(9-Octyl-9H-cabazole-3,6-diyl)-diethanone [Saeed et al., 2010], 2,7-Dibromo-9-octyl-9H-cabazole [Gagnon and Laliberté, 2008]. The dihedral angle formed by the least-square planes of the carbazole system and butyl chain is 73.8 (4)°. An examination of the deviations from the least-squares planes through individual rings show that ring A(C1—C6), B(C5—C8/N) and C(C7—C12) are planar [with a maximum deviation of 0.026 (4) Å for atom C3] with dihedral angle of A/B=1.51 (29)°, A/C=2.87 (26)° and B/C=1.70 (29)° are in close agreement with the values that observed in similar structures 9-(4-Nitrophenylsulfonyl)-9H-carbazole [Uludağ et al., 2011], 11-Butyl-3-methoxy-11H-benzo[a]-carbazole [Ergün et al., 2010]. Specifically,the bonds labelled here as C1—C2, C3—C4, C9—10, C11—C12 are shorest bond in the six membered rings, while the C6—C7 bond is the longest C—C bond in the carbazole unit (Zuluaga et al., 2011). The valence angle centred on C13, C14 and C15 are less than 120° [113.4 (3)°, 114.6 (3)° and 113.6 (3)°, respectively] and consequently, the C13—C14 and C15—C16 bonds deviate from the symmetry axis of the central ring of the carbazole system. The torsion angle C6—C5—N—C13= -179.65 (27)° indicates that the butyl chain adopts a trans conformation with respect to C5—N bond. In the crystal, the molecules are linked by π -π stacking interactions.( Cg: N/C5-C8); with Cg–Cgi 3.559 (2) Å, α=0°).