organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­ammonio-1,2,3-tride­­oxy-cis-inositol sulfate

aFachrichtung Chemie, Universität des Saarlandes, Postfach 151150, D-66041 Saarbrücken, Germany
*Correspondence e-mail: hegetschweiler@mx.uni-saarland.de

(Received 13 March 2012; accepted 12 April 2012; online 18 April 2012)

In the crystal structure of the title compound, C6H16N2O32+·SO42−, each cation forms three O—H⋯O and five N—H⋯O hydrogen bonds to six neighbouring sulfate anions. In addition, interlinking of the cations by N—H⋯O interactions is also observed. The cyclo­hexane ring adopts a chair conformation with two axial hy­droxy groups. Although the separation of 2.928 Å is almost ideal for a hydrogen bond, intra­molecular hydrogen bonding between these two hy­droxy groups is not observed.

Related literature

The synthesis of the chloride salt, as well as formation of a CuII complex of 1,3-diamino-1,2,3-tride­oxy-cis-inositol, was reported by Merten et al. (2012[Merten, G. J., Neis, C., Stucky, S., Huch, V., Rentschler, E., Natter, H., Hempelmann, R., Stöwe, K. & Hegetschweiler, K. (2012). Eur. J. Inorg. Chem. pp. 31-35.]). A crystal structure deter­min­ation of the chloride salt was performed by Neis et al. (2012[Neis, C., Merten, G. J., Altenhofer, P. & Hegetschweiler, K. (2012). Acta Cryst. E68, o1411-o1412.]). The importance of intra­molecular hydrogen bonding in syn-1,3,5-tris­ubstituted cyclo­hexane derivatives has been discussed by Gencheva et al. (2000[Gencheva, G., Bontchev, P. R., Sander, J. & Hegetschweiler, K. (2000). Z. Kristallogr. New Cryst. Struct. 215, 183-185.]), Kramer et al. (1998[Kramer, A., Alberto, R., Egli, A., Novak-Hofer, I., Hegetschweiler, K., Abram, U., Bernhardt, P. V. & Schubiger, P. A. (1998). Bioconjugate Chem. 9, 691-702.]), Kuppert et al. (2006[Kuppert, D., Comba, P. & Hegetschweiler, K. (2006). Eur. J. Inorg. Chem. pp. 2792-2807.]), and Neis et al. (2010[Neis, C., Petry, D., Demangeon, A., Morgenstern, B., Kuppert, D., Huppert, J., Stucky, S. & Hegetschweiler, K. (2010). Inorg. Chem. 49, 10092-10107.]). Puckering parameters were calculated according to Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For the treatment of hydrogen atoms in SHELXL, see: Müller et al. (2006[Müller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement - A Crystallographer's Guide to SHELXL. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C6H16N2O32+·SO42−

  • Mr = 260.27

  • Monoclinic, P 21 /n

  • a = 9.2151 (18) Å

  • b = 6.6673 (13) Å

  • c = 17.267 (4) Å

  • β = 101.46 (3)°

  • V = 1039.7 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 200 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Stoe IPDS image plate diffractometer

  • 6961 measured reflections

  • 1779 independent reflections

  • 1685 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.066

  • S = 1.06

  • 1779 reflections

  • 172 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O4i 0.87 (1) 2.09 (2) 2.9292 (17) 163 (2)
N1—H1B⋯O3ii 0.87 (2) 2.11 (2) 2.8125 (18) 138 (2)
N1—H1C⋯O7iii 0.85 (2) 2.04 (2) 2.882 (2) 170 (2)
N5—H5A⋯O5 0.89 (2) 1.97 (2) 2.8538 (17) 173 (2)
N5—H5B⋯O8iv 0.86 (1) 2.02 (2) 2.8530 (18) 162 (2)
N5—H5C⋯O7ii 0.87 (2) 2.29 (2) 3.0852 (18) 153 (2)
N5—H5C⋯O6ii 0.87 (2) 2.34 (2) 3.0856 (19) 144 (2)
O4—H4O⋯O6 0.85 (2) 1.86 (2) 2.7017 (16) 177 (2)
O2—H2O⋯O8v 0.86 (2) 1.97 (2) 2.8161 (15) 170 (2)
O3—H3O⋯O7vi 0.86 (2) 1.87 (2) 2.7149 (16) 167 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y-1, z; (iii) x-1, y-1, z; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) x-1, y, z; (vi) -x+1, -y+1, -z.

Data collection: IPDS Software (Stoe & Cie, 1997[Stoe & Cie (1997). IPDS Software. Stoe & Cie, Darmstadt, Germany.]); cell refinement: IPDS Software; data reduction: IPDS Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Due to the versatile metal- and hydrogen-binding properties, 1,3-diamino-1,2,3-trideoxy-cis-inositol has been found to be a promising building block for the construction of polynuclear metal complexes and extended hydrogen bonded networks (Merten et al., 2012). The crystal structure of a corresponding hydrochloride C6H14N2O3.2HCl has recently been reported (Neis et al., 2012). Similar to this chloride salt, the title compound contains 1,3-diammonio-1,2,3-trideoxy-cis-inositol dications with the cyclohexane ring adopting an almost ideal chair conformation (puckering parameters: Q = 0.59 Å, θ = 178.3 °, ϕ = 89.0 °). In both salts, the cation has the same form with the two ammonium groups and one of the hydroxy groups in equatorial and the remaining two hydroxy groups in axial position. In the title compound, each cation is hydrogen-bonded to six sulfate counter ions by O—H···O and N—H···O interactions, one of the latter is bifurcated. These cation···anion interactions constitute an extended three-dimensional network. Direct cation···cation hydrogen bonding is also observed: One of the ammonium groups of each cation donates a hydrogen atom to the equatorial hydroxy group of a neighbouring cation and another hydrogen atom to the axial hydroxy group of an additional neighbour. Each cation is thus connected to a total of four neighbouring cations and these interactions generate double chains, which are oriented parallel to the crystallographic b axis. As already observed for the chloride salt, all O—H and N—H groups act as hydrogen donors, however, one of the axial hydroxy groups does not accept any hydrogen atom. We explain these observations by the well established stronger steric encumbrance of axial substituents. It is again worthy to note that the non-accepting axial hydroxy group does not form an intramolecular O—H···O hydrogen bond, even though the O···O separation of 2.928 Å between the two axial oxygen atoms corresponds almost ideally to the value required for such an interaction. For corresponding structures with three axial hydroxy or amino groups in a syn-1,3,5-triaxial arrangement, it appears, however, that the formation of such intramolecular hydrogen bonds is often a prerequisite for a stable cyclohexane chair (Gencheva et al., 2000; Kramer et al., 1998; Kuppert et al., 2006). The non-observance of such a hydrogen bond in the title compound further supports the conclusion that this type of interactions would be of minor importance in molecules having only two hydroxy groups in a 1,3-syn-axial arrangement.

Related literature top

The synthesis of the chloride salt, as well as formation of a CuII complex of 1,3-diamino-1,2,3-trideoxy-cis-inositol, was reported by Merten et al. (2012). A crystal structure determination of the chloride salt was performed by Neis et al. (2012). The importance of intramolecular hydrogen bonding in syn-1,3,5-trisubstituted cyclohexane derivatives has been discussed by Gencheva et al. (2000), Kramer et al. (1998), Kuppert et al. (2006), and Neis et al. (2010). Puckering parameters were calculated according to Cremer & Pople (1975). For the treatment of hydrogen atoms in SHELXL, see: Müller et al. (2006).

Experimental top

The title compound has been obtained following the protocol given by Merten et al. (2012). 1H-NMR and 13C-NMR properties are identical with the chloride salt (Neis et al., 2012). Single crystals were grown from an aqueous solution (pH 2) by slow evaporation at 298 K.

Refinement top

All non-hydrogen atoms were refined using anisotropic displacement parameters. Hydrogen atoms were treated as recommended by Müller et al. (2006): A riding model was used for C-bonded hydrogen atoms. The positional parameters of the O- and N-bonded hydrogen atoms were refined using isotropic displacement parameters which were set to 1.5×Ueq of the pivot atom. In addition, restraints of 0.84 and 0.88 Å were used for the O—H and N—H distances, respectively.

Computing details top

Data collection: IPDS Software (Stoe & Cie, 1997); cell refinement: IPDS Software (Stoe & Cie, 1997); data reduction: IPDS Software (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The double chain structure which is formed by hydrogen bonding between dication entities (ball and stick model).
1,3-Diammonio-1,2,3-trideoxy-cis-inositol sulfate top
Crystal data top
C6H16N2O32+·SO42F(000) = 552
Mr = 260.27Dx = 1.663 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3837 reflections
a = 9.2151 (18) Åθ = 2.6–25.0°
b = 6.6673 (13) ŵ = 0.34 mm1
c = 17.267 (4) ÅT = 200 K
β = 101.46 (3)°Prism, colourless
V = 1039.7 (4) Å30.30 × 0.20 × 0.15 mm
Z = 4
Data collection top
Stoe IPDS image plate
diffractometer
1685 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.035
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
phi scansh = 1010
6961 measured reflectionsk = 77
1779 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0259P)2 + 0.7072P]
where P = (Fo2 + 2Fc2)/3
1779 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.27 e Å3
9 restraintsΔρmin = 0.29 e Å3
Crystal data top
C6H16N2O32+·SO42V = 1039.7 (4) Å3
Mr = 260.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.2151 (18) ŵ = 0.34 mm1
b = 6.6673 (13) ÅT = 200 K
c = 17.267 (4) Å0.30 × 0.20 × 0.15 mm
β = 101.46 (3)°
Data collection top
Stoe IPDS image plate
diffractometer
1685 reflections with I > 2σ(I)
6961 measured reflectionsRint = 0.035
1779 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0269 restraints
wR(F2) = 0.066H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.27 e Å3
1779 reflectionsΔρmin = 0.29 e Å3
172 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C50.44604 (15)0.0876 (2)0.10574 (8)0.0129 (3)
H50.43730.13990.05070.015*
C60.35712 (15)0.2238 (2)0.15088 (8)0.0149 (3)
H6A0.39610.36240.15210.018*
H6B0.36840.17620.20610.018*
C20.12716 (15)0.0111 (2)0.10691 (8)0.0139 (3)
H20.02410.01710.07490.017*
C10.19415 (15)0.2228 (2)0.11143 (8)0.0136 (3)
H10.18390.27680.05660.016*
C30.22081 (16)0.1251 (2)0.06417 (8)0.0137 (3)
H30.21170.07220.00920.016*
C40.38668 (15)0.1297 (2)0.10194 (8)0.0126 (3)
H40.43960.21050.06740.015*
N10.11358 (15)0.3591 (2)0.15750 (8)0.0171 (3)
H1A0.124 (2)0.325 (3)0.2070 (9)0.026*
H1B0.142 (2)0.481 (2)0.1514 (10)0.026*
H1C0.0204 (17)0.360 (3)0.1393 (10)0.026*
N50.60555 (14)0.09248 (19)0.14663 (8)0.0151 (3)
H5A0.6514 (19)0.006 (3)0.1269 (10)0.023*
H5B0.612 (2)0.084 (3)0.1971 (9)0.023*
H5C0.642 (2)0.208 (2)0.1385 (10)0.023*
O40.41236 (12)0.21890 (16)0.17886 (6)0.0177 (2)
H4O0.4859 (19)0.294 (3)0.1786 (11)0.027*
O20.12055 (12)0.05338 (16)0.18490 (6)0.0188 (2)
H2O0.0491 (19)0.137 (3)0.1815 (11)0.028*
O30.15853 (12)0.32218 (16)0.05817 (6)0.0206 (2)
H3O0.171 (2)0.369 (3)0.0137 (9)0.031*
S10.77047 (4)0.40360 (5)0.132375 (19)0.01264 (13)
O70.80382 (13)0.58885 (16)0.09000 (6)0.0268 (3)
O80.90424 (11)0.34825 (16)0.19086 (6)0.0201 (2)
O50.72807 (12)0.23732 (16)0.07600 (6)0.0221 (3)
O60.65015 (12)0.45266 (18)0.17466 (7)0.0294 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C50.0114 (7)0.0124 (7)0.0148 (7)0.0003 (5)0.0022 (5)0.0010 (5)
C60.0148 (7)0.0096 (7)0.0200 (7)0.0004 (5)0.0027 (5)0.0025 (5)
C20.0112 (7)0.0156 (7)0.0142 (6)0.0004 (5)0.0008 (5)0.0008 (5)
C10.0151 (7)0.0118 (7)0.0146 (6)0.0038 (5)0.0043 (5)0.0007 (5)
C30.0165 (7)0.0106 (7)0.0137 (6)0.0026 (5)0.0024 (5)0.0004 (5)
C40.0150 (7)0.0104 (7)0.0131 (6)0.0017 (5)0.0044 (5)0.0001 (5)
N10.0178 (7)0.0142 (6)0.0205 (7)0.0052 (5)0.0067 (5)0.0017 (5)
N50.0129 (6)0.0132 (6)0.0191 (6)0.0008 (5)0.0032 (5)0.0012 (5)
O40.0199 (5)0.0158 (5)0.0179 (5)0.0065 (4)0.0045 (4)0.0047 (4)
O20.0209 (6)0.0195 (5)0.0172 (5)0.0050 (4)0.0069 (4)0.0003 (4)
O30.0269 (6)0.0136 (5)0.0223 (5)0.0083 (4)0.0073 (4)0.0046 (4)
S10.0110 (2)0.01085 (19)0.0156 (2)0.00160 (12)0.00125 (13)0.00023 (12)
O70.0345 (7)0.0183 (6)0.0244 (6)0.0064 (5)0.0017 (5)0.0082 (4)
O80.0183 (5)0.0207 (5)0.0193 (5)0.0035 (4)0.0009 (4)0.0023 (4)
O50.0255 (6)0.0209 (6)0.0205 (5)0.0077 (4)0.0055 (4)0.0057 (4)
O60.0168 (6)0.0289 (6)0.0455 (7)0.0041 (5)0.0134 (5)0.0149 (5)
Geometric parameters (Å, º) top
C5—N51.4993 (18)C4—O41.4312 (17)
C5—C61.5355 (19)C4—H41.0000
C5—C41.5454 (19)N1—H1A0.870 (14)
C5—H51.0000N1—H1B0.867 (15)
C6—C11.521 (2)N1—H1C0.853 (15)
C6—H6A0.9900N5—H5A0.885 (15)
C6—H6B0.9900N5—H5B0.864 (14)
C2—O21.4265 (17)N5—H5C0.866 (15)
C2—C11.536 (2)O4—H4O0.845 (15)
C2—C31.5386 (19)O2—H2O0.855 (15)
C2—H21.0000O3—H3O0.856 (15)
C1—N11.4985 (18)S1—O51.4758 (11)
C1—H11.0000S1—O81.4768 (11)
C3—O31.4297 (17)S1—O61.4802 (12)
C3—C41.538 (2)S1—O71.4982 (11)
C3—H31.0000
N5—C5—C6108.67 (11)C2—C3—H3107.4
N5—C5—C4110.25 (11)O4—C4—C3111.66 (11)
C6—C5—C4110.85 (11)O4—C4—C5110.99 (11)
N5—C5—H5109.0C3—C4—C5108.20 (11)
C6—C5—H5109.0O4—C4—H4108.6
C4—C5—H5109.0C3—C4—H4108.6
C1—C6—C5110.43 (11)C5—C4—H4108.6
C1—C6—H6A109.6C1—N1—H1A113.0 (13)
C5—C6—H6A109.6C1—N1—H1B108.2 (12)
C1—C6—H6B109.6H1A—N1—H1B112.8 (17)
C5—C6—H6B109.6C1—N1—H1C112.2 (13)
H6A—C6—H6B108.1H1A—N1—H1C105.8 (18)
O2—C2—C1108.74 (11)H1B—N1—H1C104.5 (18)
O2—C2—C3114.09 (11)C5—N5—H5A107.5 (12)
C1—C2—C3107.97 (11)C5—N5—H5B109.5 (12)
O2—C2—H2108.6H5A—N5—H5B113.7 (16)
C1—C2—H2108.6C5—N5—H5C108.8 (12)
C3—C2—H2108.6H5A—N5—H5C111.5 (17)
N1—C1—C6107.99 (11)H5B—N5—H5C105.7 (17)
N1—C1—C2110.35 (12)C4—O4—H4O103.2 (12)
C6—C1—C2112.20 (11)C2—O2—H2O107.9 (12)
N1—C1—H1108.7C3—O3—H3O106.1 (13)
C6—C1—H1108.7O5—S1—O8109.81 (7)
C2—C1—H1108.7O5—S1—O6111.42 (6)
O3—C3—C4111.27 (11)O8—S1—O6108.86 (7)
O3—C3—C2108.78 (11)O5—S1—O7110.50 (6)
C4—C3—C2114.41 (11)O8—S1—O7108.39 (6)
O3—C3—H3107.4O6—S1—O7107.77 (7)
C4—C3—H3107.4
N5—C5—C6—C1179.85 (11)O2—C2—C3—C465.11 (15)
C4—C5—C6—C158.54 (15)C1—C2—C3—C455.89 (14)
C5—C6—C1—N1179.52 (11)O3—C3—C4—O458.04 (15)
C5—C6—C1—C258.64 (15)C2—C3—C4—O465.75 (15)
O2—C2—C1—N151.84 (14)O3—C3—C4—C5179.54 (11)
C3—C2—C1—N1176.11 (10)C2—C3—C4—C556.67 (15)
O2—C2—C1—C668.64 (14)N5—C5—C4—O453.77 (15)
C3—C2—C1—C655.63 (14)C6—C5—C4—O466.61 (14)
O2—C2—C3—O360.00 (15)N5—C5—C4—C3176.61 (11)
C1—C2—C3—O3179.00 (10)C6—C5—C4—C356.23 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.87 (1)2.09 (2)2.9292 (17)163 (2)
N1—H1B···O3ii0.87 (2)2.11 (2)2.8125 (18)138 (2)
N1—H1C···O7iii0.85 (2)2.04 (2)2.882 (2)170 (2)
N5—H5A···O50.89 (2)1.97 (2)2.8538 (17)173 (2)
N5—H5B···O8iv0.86 (1)2.02 (2)2.8530 (18)162 (2)
N5—H5C···O7ii0.87 (2)2.29 (2)3.0852 (18)153 (2)
N5—H5C···O6ii0.87 (2)2.34 (2)3.0856 (19)144 (2)
O4—H4O···O60.85 (2)1.86 (2)2.7017 (16)177 (2)
O2—H2O···O8v0.86 (2)1.97 (2)2.8161 (15)170 (2)
O3—H3O···O7vi0.86 (2)1.87 (2)2.7149 (16)167 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y1, z; (iii) x1, y1, z; (iv) x+3/2, y1/2, z+1/2; (v) x1, y, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H16N2O32+·SO42
Mr260.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)200
a, b, c (Å)9.2151 (18), 6.6673 (13), 17.267 (4)
β (°) 101.46 (3)
V3)1039.7 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.34
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerStoe IPDS image plate
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6961, 1779, 1685
Rint0.035
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.066, 1.06
No. of reflections1779
No. of parameters172
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: IPDS Software (Stoe & Cie, 1997), SHELXS97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O4i0.870 (14)2.086 (15)2.9292 (17)163.0 (17)
N1—H1B···O3ii0.867 (15)2.105 (16)2.8125 (18)138.4 (16)
N1—H1C···O7iii0.853 (15)2.037 (16)2.882 (2)170.3 (18)
N5—H5A···O50.885 (15)1.974 (15)2.8538 (17)172.6 (17)
N5—H5B···O8iv0.864 (14)2.019 (15)2.8530 (18)161.8 (17)
N5—H5C···O7ii0.866 (15)2.290 (16)3.0852 (18)152.8 (16)
N5—H5C···O6ii0.866 (15)2.342 (16)3.0856 (19)144.2 (15)
O4—H4O···O60.845 (15)1.857 (15)2.7017 (16)177.3 (19)
O2—H2O···O8v0.855 (15)1.970 (15)2.8161 (15)170.1 (18)
O3—H3O···O7vi0.856 (15)1.873 (15)2.7149 (16)167.4 (19)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y1, z; (iii) x1, y1, z; (iv) x+3/2, y1/2, z+1/2; (v) x1, y, z; (vi) x+1, y+1, z.
 

Acknowledgements

We thank Dr Volker Huch (Universität des Saarlandes) for the collection of the data set.

References

First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGencheva, G., Bontchev, P. R., Sander, J. & Hegetschweiler, K. (2000). Z. Kristallogr. New Cryst. Struct. 215, 183–185.  CAS Google Scholar
First citationKramer, A., Alberto, R., Egli, A., Novak-Hofer, I., Hegetschweiler, K., Abram, U., Bernhardt, P. V. & Schubiger, P. A. (1998). Bioconjugate Chem. 9, 691–702.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuppert, D., Comba, P. & Hegetschweiler, K. (2006). Eur. J. Inorg. Chem. pp. 2792–2807.  Web of Science CSD CrossRef Google Scholar
First citationMerten, G. J., Neis, C., Stucky, S., Huch, V., Rentschler, E., Natter, H., Hempelmann, R., Stöwe, K. & Hegetschweiler, K. (2012). Eur. J. Inorg. Chem. pp. 31–35.  Web of Science CSD CrossRef Google Scholar
First citationMüller, P., Herbst-Irmer, R., Spek, A. L., Schneider, T. R. & Sawaya, M. R. (2006). Crystal Structure Refinement - A Crystallographer's Guide to SHELXL. Oxford University Press.  Google Scholar
First citationNeis, C., Merten, G. J., Altenhofer, P. & Hegetschweiler, K. (2012). Acta Cryst. E68, o1411–o1412.  CSD CrossRef IUCr Journals Google Scholar
First citationNeis, C., Petry, D., Demangeon, A., Morgenstern, B., Kuppert, D., Huppert, J., Stucky, S. & Hegetschweiler, K. (2010). Inorg. Chem. 49, 10092–10107.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (1997). IPDS Software. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds