organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1534

Ethyl 2-(4-nitro­phen­­oxy)acetate

aCollege of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: sunsuwen_5127@163.com

(Received 6 March 2012; accepted 18 April 2012; online 25 April 2012)

In the title mol­ecule, C10H11NO5, the methyl C atom deviates by 0.830 (6) Å from the mean plane of the remaining non-H atoms. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into layers parallel to the bc plane.

Related literature

For the structure of tert-butyl 2-(4-nitro­phen­oxy)acetate, see: Ali et al. (2011[Ali, Q., Anis, I., Raza Shah, M. & Ng, S. W. (2011). Acta Cryst. E67, o532.]). For general background to ferroelectric organics, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11NO5

  • Mr = 225.20

  • Monoclinic, P 21 /c

  • a = 5.3848 (11) Å

  • b = 8.4482 (17) Å

  • c = 24.238 (5) Å

  • β = 92.59 (3)°

  • V = 1101.5 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.2 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.968, Tmax = 0.978

  • 9279 measured reflections

  • 2169 independent reflections

  • 1157 reflections with I > 2σ(I)

  • Rint = 0.089

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.156

  • S = 1.01

  • 2169 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯O4i 0.93 2.53 3.177 (4) 127
C10—H10B⋯O1ii 0.96 2.58 3.513 (6) 164
Symmetry codes: (i) -x, -y+2, -z+1; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, (I), has been obtain during the search for new organic compounds which demonstrate ferroelectric phase changes (Fu et al., 2009; Ye et al., 2006). Though the measured dielectric constant of (I) showed no dielectric disuniformity in the range 120–385 K (mp.393–402 K), herewith we present its crystal structure.

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in tert-butyl 2-(4-nitrophenoxy)acetate (Ali et al., 2011). Atom C10 deviates at 0.830 (6) Å from the mean plane of the rest non-H atoms.Weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into layers parallel to bc plane.

Related literature top

For the structure of tert-butyl 2-(4-nitrophenoxy)acetate, see: Ali et al. (2011). For general background to ferroelectric organics, see: Fu et al. (2009); Ye et al. (2006).

Experimental top

4-Nitro-phenol (7 g) and 1-Bromo-butan-2-one (8.5 g) were dissolved in acetone, kalium carbonicum (7.5 g) was added to the mixture. Then the mixture was heated and refluxed by mechanical stirring at 70°C. Yellow solid was filtered off. This solid was dissolved in ethanol and single crystals suitable for X-ray structure analysis were obtained by the slow evaporation of the above solution after 3 days in air.

Refinement top

All H atoms were placed in calculated positions (N—H = 0.89 Å; C—H = 0.93 Å for Csp2 atoms and C—H = 0.96 Å and 0.97 Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2) and 1.5Ueq(Csp3,N)] and allowed to ride.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 40% probability displacement ellipsoids.
Ethyl 2-(4-nitrophenoxy)acetate top
Crystal data top
C10H11NO5F(000) = 472
Mr = 225.20Dx = 1.358 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3450 reflections
a = 5.3848 (11) Åθ = 3.4–26.0°
b = 8.4482 (17) ŵ = 0.11 mm1
c = 24.238 (5) ÅT = 293 K
β = 92.59 (3)°Block, colourless
V = 1101.5 (4) Å30.3 × 0.3 × 0.2 mm
Z = 4
Data collection top
Rigaku Mercury CCD
diffractometer
2169 independent reflections
Radiation source: fine-focus sealed tube1157 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.089
ω scansθmax = 26.0°, θmin = 3.4°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 66
Tmin = 0.968, Tmax = 0.978k = 1010
9279 measured reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.156 w = 1/[σ2(Fo2) + (0.05P)2 + 0.35P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2169 reflectionsΔρmax = 0.20 e Å3
146 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.011 (2)
Crystal data top
C10H11NO5V = 1101.5 (4) Å3
Mr = 225.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.3848 (11) ŵ = 0.11 mm1
b = 8.4482 (17) ÅT = 293 K
c = 24.238 (5) Å0.3 × 0.3 × 0.2 mm
β = 92.59 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
2169 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1157 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.978Rint = 0.089
9279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
2169 reflectionsΔρmin = 0.21 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.2402 (3)0.9062 (2)0.43476 (7)0.0593 (5)
C40.3764 (4)0.8226 (3)0.47348 (10)0.0502 (6)
C30.2863 (5)0.8248 (3)0.52630 (10)0.0559 (7)
H3A0.14380.88240.53310.067*
C10.6184 (5)0.6596 (3)0.55727 (11)0.0540 (7)
C70.3224 (5)0.9043 (3)0.38008 (10)0.0598 (7)
H7A0.32280.79680.36610.072*
H7B0.49020.94580.37940.072*
C60.7118 (5)0.6582 (3)0.50557 (11)0.0600 (7)
H6A0.85650.60240.49920.072*
O50.2362 (4)1.0156 (3)0.29508 (8)0.0930 (8)
C50.5909 (4)0.7396 (3)0.46316 (11)0.0568 (7)
H5A0.65270.73890.42790.068*
N10.7460 (5)0.5687 (3)0.60109 (11)0.0713 (7)
C20.4062 (5)0.7424 (3)0.56848 (11)0.0588 (7)
H2A0.34540.74240.60380.071*
O10.6650 (5)0.5737 (3)0.64727 (10)0.1141 (10)
O20.9260 (4)0.4885 (3)0.59049 (9)0.0938 (8)
C80.1488 (5)1.0048 (4)0.34495 (11)0.0640 (8)
O40.0361 (4)1.0635 (3)0.35870 (9)0.1103 (10)
C90.0983 (7)1.1139 (6)0.25442 (15)0.1140 (14)
H9A0.02591.05040.23440.137*
H9B0.01401.19870.27300.137*
C100.2659 (8)1.1779 (7)0.21723 (18)0.157 (2)
H10A0.17621.24150.19020.235*
H10B0.34911.09350.19910.235*
H10C0.38631.24240.23710.235*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0581 (11)0.0663 (12)0.0541 (11)0.0116 (9)0.0075 (8)0.0024 (9)
C40.0496 (15)0.0462 (15)0.0547 (15)0.0030 (12)0.0012 (12)0.0033 (13)
C30.0522 (15)0.0567 (17)0.0594 (16)0.0004 (13)0.0083 (12)0.0025 (14)
C10.0535 (16)0.0467 (15)0.0612 (17)0.0028 (13)0.0046 (13)0.0025 (14)
C70.0612 (16)0.0655 (18)0.0534 (16)0.0049 (14)0.0104 (13)0.0001 (14)
C60.0551 (16)0.0554 (17)0.0694 (18)0.0060 (13)0.0020 (14)0.0043 (16)
O50.0837 (14)0.130 (2)0.0668 (13)0.0279 (14)0.0152 (11)0.0294 (14)
C50.0539 (16)0.0596 (17)0.0574 (15)0.0025 (13)0.0079 (12)0.0056 (14)
N10.0725 (17)0.0681 (17)0.0725 (18)0.0037 (14)0.0054 (14)0.0084 (15)
C20.0636 (17)0.0562 (17)0.0568 (16)0.0076 (14)0.0050 (13)0.0006 (14)
O10.1161 (19)0.153 (3)0.0734 (16)0.0334 (17)0.0087 (14)0.0313 (17)
O20.0892 (16)0.0956 (17)0.0954 (17)0.0293 (14)0.0086 (13)0.0132 (14)
C80.0609 (17)0.076 (2)0.0554 (16)0.0006 (16)0.0055 (14)0.0000 (15)
O40.0937 (17)0.161 (3)0.0771 (15)0.0615 (17)0.0125 (13)0.0127 (15)
C90.101 (3)0.160 (4)0.080 (2)0.023 (3)0.002 (2)0.043 (3)
C100.149 (4)0.196 (5)0.129 (4)0.053 (4)0.043 (3)0.081 (4)
Geometric parameters (Å, º) top
O3—C41.362 (3)O5—C81.320 (3)
O3—C71.416 (3)O5—C91.465 (4)
C4—C51.384 (3)C5—H5A0.9300
C4—C31.390 (3)N1—O21.220 (3)
C3—C21.374 (3)N1—O11.220 (3)
C3—H3A0.9300C2—H2A0.9300
C1—C61.371 (3)C8—O41.174 (3)
C1—C21.377 (3)C9—C101.412 (5)
C1—N11.458 (3)C9—H9A0.9700
C7—C81.499 (4)C9—H9B0.9700
C7—H7A0.9700C10—H10A0.9600
C7—H7B0.9700C10—H10B0.9600
C6—C51.376 (3)C10—H10C0.9600
C6—H6A0.9300
C4—O3—C7117.25 (19)C4—C5—H5A120.4
O3—C4—C5124.5 (2)O2—N1—O1122.2 (3)
O3—C4—C3115.4 (2)O2—N1—C1119.5 (3)
C5—C4—C3120.1 (2)O1—N1—C1118.3 (3)
C2—C3—C4120.5 (2)C3—C2—C1118.5 (2)
C2—C3—H3A119.8C3—C2—H2A120.8
C4—C3—H3A119.8C1—C2—H2A120.8
C6—C1—C2121.8 (2)O4—C8—O5125.0 (3)
C6—C1—N1118.8 (2)O4—C8—C7126.4 (3)
C2—C1—N1119.5 (2)O5—C8—C7108.7 (2)
O3—C7—C8108.2 (2)C10—C9—O5109.1 (3)
O3—C7—H7A110.1C10—C9—H9A109.9
C8—C7—H7A110.1O5—C9—H9A109.9
O3—C7—H7B110.1C10—C9—H9B109.9
C8—C7—H7B110.1O5—C9—H9B109.9
H7A—C7—H7B108.4H9A—C9—H9B108.3
C1—C6—C5119.8 (2)C9—C10—H10A109.5
C1—C6—H6A120.1C9—C10—H10B109.5
C5—C6—H6A120.1H10A—C10—H10B109.5
C8—O5—C9117.7 (3)C9—C10—H10C109.5
C6—C5—C4119.3 (2)H10A—C10—H10C109.5
C6—C5—H5A120.4H10B—C10—H10C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i0.932.533.177 (4)127
C10—H10B···O1ii0.962.583.513 (6)164
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H11NO5
Mr225.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)5.3848 (11), 8.4482 (17), 24.238 (5)
β (°) 92.59 (3)
V3)1101.5 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.3 × 0.3 × 0.2
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.968, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
9279, 2169, 1157
Rint0.089
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.156, 1.01
No. of reflections2169
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.21

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O4i0.932.533.177 (4)126.5
C10—H10B···O1ii0.962.583.513 (6)164.1
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+3/2, z1/2.
 

Acknowledgements

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

References

First citationAli, Q., Anis, I., Raza Shah, M. & Ng, S. W. (2011). Acta Cryst. E67, o532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1534
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds