organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1400

Ethyl 2-[4,5-bis­­(butyl­sulfan­yl)-1,3-di­thiol-2-yl­­idene]-1,3-di­thiolo[4,5-c]pyrrole-4-carboxyl­ate

aSchool of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: hrb1018@163.com

(Received 12 March 2012; accepted 7 April 2012; online 18 April 2012)

In the title mol­ecule, C19H25NO2S6, the butyl chains are each disordered over two conformations in a 0.689 (10):0.311 (10) ratio. In the crystal, pairs of N—H⋯O hydrogen bonds link mol­ecules into centrosymmetric dimers. Short S⋯S contacts of 3.553 (4) Å are observed.

Related literature

For background to tetra­thia­fulvalenes, see: Jeppesen et al. (1999[Jeppesen, J. O., Takimiya, K., Jensen, F. & Becher, J. (1999). Org. Lett. 1, 1291-1294.]); Hansel et al. (2004[Hansel, J. A., Becher, J., Jeppesen, J. O., Levilain, E., Nielsen, M. B., Petersen, B. M., Petersen, J. C. & Sahin, Y. (2004). J. Mater. Chem. 14, 179-184.]). For details of the synthesis, see: Hou et al. (2010[Hou, R. B., Su, C., Kan, Y. H., Gu, L. Y. & Yin, B. Z. (2010). Sens. Lett. 8, 308-313.]). For a similar structure, see: Hou & Yin (2010[Hou, R.-B. & Yin, B.-Z. (2010). Acta Cryst. E66, o3353.]).

[Scheme 1]

Experimental

Crystal data
  • C19H25NO2S6

  • Mr = 491.76

  • Monoclinic, P 21 /c

  • a = 9.687 (3) Å

  • b = 26.608 (9) Å

  • c = 8.876 (5) Å

  • β = 108.408 (17)°

  • V = 2170.7 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 288 K

  • 0.48 × 0.18 × 0.17 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.747, Tmax = 0.898

  • 17087 measured reflections

  • 3823 independent reflections

  • 3114 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.120

  • S = 1.04

  • 3823 reflections

  • 309 parameters

  • 188 restraints

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.71 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 1.96 2.782 (3) 160
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The tetrathiafulvalenes (TTFs) have attracted considerable attention in organic synthesis (Jeppesen et al., 1999) due to high electrical conductivity and superconductor properties of these compounds. Recently, Hansel reported a series of novel donor-π-acceptor dyads with pyrrolo-annelated tetrathiafulvalene units, which possess significant third-order non-linear optical properties (Hansel et al., 2004). In this paper, we describe the crystal structure of the title compound (I), which is a key precursor of the dyads.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with the reported ones (Hou & Yin, 2010). Except C11 and two butyls, all non-hydrogen atoms are nearly coplanar. The intermolecular N—H···O hydrogen bonds (Table 1) link the molecuels into dimers, and the dimers are further arranged along [101] direction due to the short S···S [3.553 (4) Å] interactions.

Related literature top

For background to tetrathiafulvalenes, see: Jeppesen et al. (1999); Hansel et al. (2004). For details of the synthesis, see: Hou et al. (2010). For the similar structure, see: Hou & Yin (2010).

Experimental top

The title compound was prepared according to the literature (Hou et al., 2010). Single crystals suitable for X-ray diffraction were prepared by slow evaporation method from a solution in dichloromethane/petroleum (60–90 °C) at room temperature.

Refinement top

C-bound H-atoms were placed in calculated positions (C—H 0.93-0.97 Å) and were included in the refinement in the riding model, with Uiso(H) = 1.5 or 1.2 Ueq(C). N-bound H-atom was placed in calculated position with N—H = 0.86 Å and refined with Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probalility level. Only major components of the disordered groups are shown.
Ethyl 2-[4,5-bis(butylsulfanyl)-1,3-dithiol-2-ylidene]- 1,3-dithiolo[4,5-c]pyrrole-4-carboxylate top
Crystal data top
C19H25NO2S6F(000) = 1032
Mr = 491.76Dx = 1.505 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 15498 reflections
a = 9.687 (3) Åθ = 3.1–27.5°
b = 26.608 (9) ŵ = 0.65 mm1
c = 8.876 (5) ÅT = 288 K
β = 108.408 (17)°Block, yellow
V = 2170.7 (15) Å30.48 × 0.18 × 0.17 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3823 independent reflections
Radiation source: fine-focus sealed tube3114 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.747, Tmax = 0.898k = 3131
17087 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0611P)2 + 1.4202P]
where P = (Fo2 + 2Fc2)/3
3823 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.39 e Å3
188 restraintsΔρmin = 0.71 e Å3
Crystal data top
C19H25NO2S6V = 2170.7 (15) Å3
Mr = 491.76Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.687 (3) ŵ = 0.65 mm1
b = 26.608 (9) ÅT = 288 K
c = 8.876 (5) Å0.48 × 0.18 × 0.17 mm
β = 108.408 (17)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3823 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3114 reflections with I > 2σ(I)
Tmin = 0.747, Tmax = 0.898Rint = 0.030
17087 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042188 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
3823 reflectionsΔρmin = 0.71 e Å3
309 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.4627 (3)0.46393 (10)0.2578 (3)0.0442 (6)
C20.3963 (3)0.45459 (9)0.3722 (3)0.0413 (6)
C30.2598 (3)0.47643 (10)0.3237 (3)0.0448 (6)
C40.2437 (3)0.49832 (11)0.1810 (3)0.0486 (7)
H40.16190.51570.11970.058*
C50.2830 (3)0.43726 (10)0.5907 (3)0.0437 (6)
C60.2589 (3)0.42284 (10)0.7241 (3)0.0460 (6)
C70.2628 (4)0.37832 (11)0.9810 (3)0.0491 (7)
C80.1321 (3)0.39944 (11)0.9317 (3)0.0491 (7)
C90.6006 (3)0.44958 (11)0.2450 (3)0.0474 (7)
C100.8040 (4)0.40090 (14)0.3572 (5)0.0669 (9)
H10A0.86680.39190.46240.080*
H10B0.85420.42510.31140.080*
C110.7626 (7)0.3553 (2)0.2540 (8)0.151 (3)
H11A0.71000.33240.29920.227*
H11B0.84890.33920.24660.227*
H11C0.70240.36510.14990.227*
S60.00077 (10)0.39799 (4)1.02888 (11)0.0656 (3)
C120.1593 (4)0.37886 (14)0.8701 (5)0.0757 (10)
H12A0.24100.37770.91100.091*0.689 (10)
H12B0.18060.40430.78760.091*0.689 (10)
H12C0.24590.38550.89950.091*0.311 (10)
H12D0.16620.39800.77490.091*0.311 (10)
C130.1481 (11)0.3310 (2)0.7998 (12)0.079 (2)0.689 (10)
H13A0.12520.30550.88200.095*0.689 (10)
H13B0.06840.33220.75570.095*0.689 (10)
C140.2837 (10)0.3163 (3)0.6721 (11)0.084 (2)0.689 (10)
H14A0.30450.33930.58300.101*0.689 (10)
H14B0.36620.31550.71170.101*0.689 (10)
C150.249 (2)0.2639 (4)0.625 (2)0.179 (8)0.689 (10)
H15A0.33170.25110.54210.268*0.689 (10)
H15B0.22730.24200.71500.268*0.689 (10)
H15C0.16680.26560.58660.268*0.689 (10)
C13'0.145 (3)0.3255 (4)0.850 (4)0.122 (10)0.311 (10)
H13C0.12230.30890.95240.147*0.311 (10)
H13D0.06550.31920.80790.147*0.311 (10)
C14'0.282 (3)0.3044 (10)0.740 (3)0.138 (8)0.311 (10)
H14C0.34940.33200.70490.165*0.311 (10)
H14D0.32250.28220.80200.165*0.311 (10)
C15'0.279 (3)0.2759 (10)0.595 (3)0.105 (6)0.311 (10)
H15D0.37700.26740.53300.157*0.311 (10)
H15E0.22330.24570.62660.157*0.311 (10)
H15F0.23610.29640.53310.157*0.311 (10)
S50.33144 (12)0.34689 (4)1.15800 (11)0.0716 (3)
C160.3736 (6)0.29134 (14)1.0928 (6)0.0958 (14)
H16A0.41350.29611.00650.115*0.689 (10)
H16B0.44360.27311.17790.115*0.689 (10)
H16C0.45450.29811.05360.115*0.311 (10)
H16D0.41170.27031.18610.115*0.311 (10)
C170.2338 (8)0.2642 (2)1.0379 (10)0.089 (2)0.689 (10)
H17A0.18210.26801.11470.106*0.689 (10)
H17B0.17370.27800.93740.106*0.689 (10)
C180.2631 (8)0.2107 (2)1.0189 (10)0.092 (2)0.689 (10)
H18A0.31630.19581.12040.111*0.689 (10)
H18B0.31940.20660.94670.111*0.689 (10)
C190.1163 (15)0.1872 (6)0.952 (3)0.132 (6)0.689 (10)
H19A0.12710.15210.93370.198*0.689 (10)
H19B0.06410.20330.85420.198*0.689 (10)
H19C0.06320.19101.02660.198*0.689 (10)
C17'0.2867 (19)0.2577 (5)0.9740 (15)0.105 (5)0.311 (10)
H17C0.34500.23560.93190.126*0.311 (10)
H17D0.21570.27520.88800.126*0.311 (10)
C18'0.219 (3)0.2313 (8)1.081 (2)0.127 (6)0.311 (10)
H18C0.14720.25271.10310.152*0.311 (10)
H18D0.29310.22311.18030.152*0.311 (10)
C19'0.149 (3)0.1841 (9)0.999 (5)0.118 (10)0.311 (10)
H19D0.11700.16411.07140.176*0.311 (10)
H19E0.21820.16540.96410.176*0.311 (10)
H19F0.06710.19270.90870.176*0.311 (10)
N10.3666 (3)0.49065 (8)0.1432 (3)0.0486 (6)
H10.38130.50130.05800.058*
O10.6480 (2)0.46096 (8)0.1393 (3)0.0581 (6)
O20.6701 (2)0.42077 (8)0.3638 (2)0.0540 (5)
S10.44602 (8)0.42390 (3)0.54986 (9)0.0483 (2)
S20.15379 (9)0.47146 (3)0.44873 (10)0.0558 (2)
S30.09887 (9)0.43714 (3)0.76775 (9)0.0564 (2)
S40.38360 (9)0.39046 (3)0.87406 (10)0.0548 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0517 (17)0.0411 (14)0.0481 (15)0.0027 (12)0.0276 (13)0.0018 (12)
C20.0472 (16)0.0381 (13)0.0444 (14)0.0021 (11)0.0229 (13)0.0003 (11)
C30.0484 (17)0.0425 (14)0.0506 (16)0.0013 (12)0.0255 (13)0.0013 (12)
C40.0568 (18)0.0460 (15)0.0491 (16)0.0038 (13)0.0251 (14)0.0055 (12)
C50.0471 (16)0.0429 (14)0.0487 (15)0.0026 (12)0.0259 (13)0.0010 (12)
C60.0496 (17)0.0474 (15)0.0467 (16)0.0024 (12)0.0235 (13)0.0010 (12)
C70.0605 (19)0.0465 (15)0.0455 (16)0.0039 (13)0.0244 (14)0.0016 (12)
C80.0568 (19)0.0524 (16)0.0460 (16)0.0051 (14)0.0277 (14)0.0034 (13)
C90.0504 (17)0.0474 (15)0.0500 (16)0.0085 (13)0.0238 (14)0.0008 (13)
C100.0492 (19)0.082 (2)0.075 (2)0.0094 (17)0.0266 (17)0.0141 (19)
C110.134 (6)0.165 (6)0.179 (7)0.040 (5)0.084 (5)0.022 (5)
S60.0676 (6)0.0819 (6)0.0619 (5)0.0029 (4)0.0415 (5)0.0085 (4)
C120.063 (2)0.080 (2)0.096 (3)0.0058 (18)0.042 (2)0.006 (2)
C130.075 (4)0.067 (3)0.104 (6)0.010 (3)0.041 (4)0.014 (3)
C140.072 (4)0.072 (4)0.113 (6)0.011 (3)0.037 (4)0.010 (4)
C150.164 (15)0.094 (8)0.266 (18)0.016 (8)0.050 (13)0.060 (10)
C13'0.115 (14)0.089 (9)0.149 (17)0.001 (10)0.021 (13)0.001 (11)
C14'0.133 (14)0.094 (12)0.166 (17)0.024 (11)0.018 (14)0.004 (12)
C15'0.081 (12)0.099 (15)0.132 (12)0.022 (11)0.029 (11)0.030 (10)
S50.0952 (7)0.0666 (5)0.0576 (5)0.0101 (5)0.0307 (5)0.0186 (4)
C160.120 (4)0.060 (2)0.105 (3)0.011 (2)0.031 (3)0.018 (2)
C170.112 (5)0.067 (4)0.090 (5)0.007 (3)0.037 (4)0.004 (3)
C180.121 (5)0.060 (3)0.107 (5)0.007 (4)0.051 (4)0.003 (3)
C190.133 (10)0.103 (9)0.152 (11)0.035 (9)0.035 (9)0.005 (8)
C17'0.152 (12)0.076 (9)0.122 (10)0.009 (7)0.092 (9)0.034 (7)
C18'0.173 (15)0.102 (12)0.140 (13)0.015 (10)0.098 (11)0.019 (10)
C19'0.110 (16)0.043 (8)0.20 (3)0.021 (7)0.046 (16)0.032 (10)
N10.0611 (16)0.0467 (13)0.0473 (13)0.0003 (11)0.0302 (12)0.0063 (11)
O10.0600 (13)0.0686 (13)0.0588 (13)0.0016 (11)0.0373 (11)0.0114 (10)
O20.0493 (12)0.0639 (13)0.0566 (12)0.0012 (10)0.0281 (10)0.0102 (10)
S10.0495 (4)0.0527 (4)0.0506 (4)0.0049 (3)0.0271 (3)0.0094 (3)
S20.0520 (5)0.0668 (5)0.0599 (5)0.0112 (4)0.0336 (4)0.0159 (4)
S30.0546 (5)0.0706 (5)0.0541 (5)0.0094 (4)0.0315 (4)0.0154 (4)
S40.0523 (5)0.0657 (5)0.0522 (4)0.0051 (4)0.0247 (4)0.0095 (4)
Geometric parameters (Å, º) top
C1—N11.345 (4)C14—H14B0.9700
C1—C21.385 (4)C15—H15A0.9600
C1—C91.427 (4)C15—H15B0.9600
C2—C31.383 (4)C15—H15C0.9600
C2—S11.704 (3)C13'—C14'1.484 (9)
C3—C41.358 (4)C13'—H13C0.9700
C3—S21.738 (3)C13'—H13D0.9700
C4—N11.350 (4)C14'—C15'1.501 (9)
C4—H40.9300C14'—H14C0.9700
C5—C61.333 (4)C14'—H14D0.9700
C5—S21.728 (3)C15'—H15D0.9600
C5—S11.765 (3)C15'—H15E0.9600
C6—S41.720 (3)C15'—H15F0.9600
C6—S31.754 (3)S5—C161.684 (4)
C7—C81.327 (4)C16—C17'1.435 (9)
C7—S51.718 (3)C16—C171.475 (7)
C7—S41.753 (3)C16—H16A0.9700
C8—S31.713 (3)C16—H16B0.9700
C8—S61.748 (3)C16—H16C0.9700
C9—O11.206 (3)C16—H16D0.9700
C9—O21.306 (4)C17—C181.473 (7)
C10—O21.419 (4)C17—H17A0.9700
C10—C111.496 (4)C17—H17B0.9700
C10—H10A0.9700C18—C191.495 (8)
C10—H10B0.9700C18—H18A0.9700
C11—H11A0.9600C18—H18B0.9700
C11—H11B0.9600C19—H19A0.9600
C11—H11C0.9600C19—H19B0.9600
S6—C121.808 (4)C19—H19C0.9600
C12—C131.437 (6)C17'—C18'1.485 (9)
C12—C13'1.444 (9)C17'—H17C0.9700
C12—H12A0.9700C17'—H17D0.9700
C12—H12B0.9700C18'—C19'1.503 (9)
C12—H12C0.9700C18'—H18C0.9700
C12—H12D0.9700C18'—H18D0.9700
C13—C141.491 (7)C19'—H19D0.9600
C13—H13A0.9700C19'—H19E0.9600
C13—H13B0.9700C19'—H19F0.9600
C14—C151.524 (4)N1—H10.8600
C14—H14A0.9700
N1—C1—C2106.2 (2)C12—C13'—H13D109.5
N1—C1—C9121.5 (2)C14'—C13'—H13D109.5
C2—C1—C9132.3 (3)H13C—C13'—H13D108.1
C3—C2—C1108.4 (3)C13'—C14'—C15'120 (3)
C3—C2—S1116.9 (2)C13'—C14'—H14C107.3
C1—C2—S1134.7 (2)C15'—C14'—H14C107.3
C4—C3—C2106.7 (3)C13'—C14'—H14D107.3
C4—C3—S2135.3 (2)C15'—C14'—H14D107.3
C2—C3—S2118.0 (2)H14C—C14'—H14D106.9
N1—C4—C3108.5 (3)C14'—C15'—H15D109.5
N1—C4—H4125.8C14'—C15'—H15E109.5
C3—C4—H4125.8H15D—C15'—H15E109.5
C6—C5—S2120.6 (2)C14'—C15'—H15F109.5
C6—C5—S1122.9 (2)H15D—C15'—H15F109.5
S2—C5—S1116.44 (15)H15E—C15'—H15F109.5
C5—C6—S4123.6 (2)C16—S5—C7100.3 (2)
C5—C6—S3123.3 (2)C17'—C16—C1735.7 (6)
S4—C6—S3113.05 (15)C17'—C16—S5130.5 (8)
C8—C7—S5124.1 (2)C17—C16—S5104.2 (4)
C8—C7—S4118.3 (2)C17'—C16—H16A77.8
S5—C7—S4116.94 (19)C17—C16—H16A110.9
C7—C8—S3115.6 (2)S5—C16—H16A110.9
C7—C8—S6126.6 (2)C17'—C16—H16B111.4
S3—C8—S6117.47 (18)C17—C16—H16B110.9
O1—C9—O2123.3 (3)S5—C16—H16B110.9
O1—C9—C1126.2 (3)H16A—C16—H16B108.9
O2—C9—C1110.5 (2)C17'—C16—H16C101.8
O2—C10—C11104.8 (3)C17—C16—H16C137.3
O2—C10—H10A110.8S5—C16—H16C105.7
C11—C10—H10A110.8H16A—C16—H16C28.6
O2—C10—H10B110.8H16B—C16—H16C85.8
C11—C10—H10B110.8C17'—C16—H16D104.2
H10A—C10—H10B108.9C17—C16—H16D93.6
C10—C11—H11A109.5S5—C16—H16D106.3
C10—C11—H11B109.5H16A—C16—H16D127.6
H11A—C11—H11B109.5H16B—C16—H16D20.6
C10—C11—H11C109.5H16C—C16—H16D106.3
H11A—C11—H11C109.5C18—C17—C16108.7 (6)
H11B—C11—H11C109.5C18—C17—H17A110.0
C8—S6—C12101.55 (17)C16—C17—H17A110.0
C13—C12—C13'18.5 (16)C18—C17—H17B110.0
C13—C12—S6115.1 (5)C16—C17—H17B110.0
C13'—C12—S6106.3 (12)H17A—C17—H17B108.3
C13—C12—H12A108.5C17—C18—C19104.9 (9)
C13'—C12—H12A97.8C17—C18—H18A110.8
S6—C12—H12A108.5C19—C18—H18A110.8
C13—C12—H12B108.5C17—C18—H18B110.8
C13'—C12—H12B126.8C19—C18—H18B110.8
S6—C12—H12B108.5H18A—C18—H18B108.9
H12A—C12—H12B107.5C18—C19—H19A109.5
C13—C12—H12C117.9C18—C19—H19B109.5
C13'—C12—H12C109.6H19A—C19—H19B109.5
S6—C12—H12C109.9C18—C19—H19C109.5
H12A—C12—H12C13.5H19A—C19—H19C109.5
H12B—C12—H12C94.7H19B—C19—H19C109.5
C13—C12—H12D94.6C16—C17'—C18'95.7 (11)
C13'—C12—H12D113.1C16—C17'—H17C112.6
S6—C12—H12D109.7C18'—C17'—H17C112.6
H12A—C12—H12D120.2C16—C17'—H17D112.6
H12B—C12—H12D15.7C18'—C17'—H17D112.6
H12C—C12—H12D108.2H17C—C17'—H17D110.1
C12—C13—C14113.2 (7)C17'—C18'—C19'108 (2)
C12—C13—H13A108.9C17'—C18'—H18C110.1
C14—C13—H13A108.9C19'—C18'—H18C110.1
C12—C13—H13B108.9C17'—C18'—H18D110.1
C14—C13—H13B108.9C19'—C18'—H18D110.1
H13A—C13—H13B107.8H18C—C18'—H18D108.4
C13—C14—C15103.5 (10)C18'—C19'—H19D109.5
C13—C14—H14A111.1C18'—C19'—H19E109.5
C15—C14—H14A111.1H19D—C19'—H19E109.5
C13—C14—H14B111.1C18'—C19'—H19F109.5
C15—C14—H14B111.1H19D—C19'—H19F109.5
H14A—C14—H14B109.0H19E—C19'—H19F109.5
C14—C15—H15A109.5C1—N1—C4110.2 (2)
C14—C15—H15B109.5C1—N1—H1124.9
H15A—C15—H15B109.5C4—N1—H1124.9
C14—C15—H15C109.5C9—O2—C10115.5 (2)
H15A—C15—H15C109.5C2—S1—C594.82 (13)
H15B—C15—H15C109.5C5—S2—C393.89 (14)
C12—C13'—C14'110.6 (18)C8—S3—C696.81 (14)
C12—C13'—H13C109.5C6—S4—C794.90 (14)
C14'—C13'—H13C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.962.782 (3)160
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H25NO2S6
Mr491.76
Crystal system, space groupMonoclinic, P21/c
Temperature (K)288
a, b, c (Å)9.687 (3), 26.608 (9), 8.876 (5)
β (°) 108.408 (17)
V3)2170.7 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.48 × 0.18 × 0.17
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.747, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
17087, 3823, 3114
Rint0.030
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.120, 1.04
No. of reflections3823
No. of parameters309
No. of restraints188
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.71

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.962.782 (3)159.5
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of Jilin Province (grant No. 20101548).

References

First citationHansel, J. A., Becher, J., Jeppesen, J. O., Levilain, E., Nielsen, M. B., Petersen, B. M., Petersen, J. C. & Sahin, Y. (2004). J. Mater. Chem. 14, 179–184.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationHou, R. B., Su, C., Kan, Y. H., Gu, L. Y. & Yin, B. Z. (2010). Sens. Lett. 8, 308–313.  Web of Science CrossRef CAS Google Scholar
First citationHou, R.-B. & Yin, B.-Z. (2010). Acta Cryst. E66, o3353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJeppesen, J. O., Takimiya, K., Jensen, F. & Becher, J. (1999). Org. Lett. 1, 1291–1294.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1400
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds