organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1380

5-Benzoyl-13-bromo-4-hy­dr­oxy[2.2]para­cyclo­phane

aSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Taishan University, Tai'an 27012, People's Republic of China
*Correspondence e-mail: ydma@sdu.edu.cn

(Received 13 March 2012; accepted 30 March 2012; online 13 April 2012)

The title compound, C23H19BrO2, was synthesized from 13-bromo-4-hy­droxy[2.2]paracyclo­phane and benzoyl chloride. The hy­droxy and carbonyl groups are involved in intra­molecular O—H⋯O hydrogen bonding. The crystal packing exhibits weak C—H⋯O inter­actions, which link the mol­ecules into sheets parallel to the bc plane.

Related literature

For a related structure, see: Hong et al. (2011[Hong, B., Ma, Y., Duan, W., He, F. & Zhao, L. (2011). Acta Cryst. E67, o950.]). For background to [2.2]paracyclo­phanes, see: Fache et al. (2000[Fache, F., Schultz, E., Tommasino, M. L. & Lemaire, M. (2000). Chem. Rev. 100, 2159-2231.]); Danilova et al. (2003[Danilova, T. I., Rozenberg, V. I., Sergeeva, E. I., Starikova, Z. A. & Bräse, S. (2003). Tetrahedron Asymmetry, 14, 2013-2019.]). For details of the synthesis, see: Xin et al. (2010[Xin, D. Y., Ma, Y. D. & He, F. Y. (2010). Tetrahedron Asymmetry, 21, 333-338.]).

[Scheme 1]

Experimental

Crystal data
  • C23H19BrO2

  • Mr = 407.29

  • Monoclinic, P 21 /c

  • a = 12.5250 (18) Å

  • b = 7.8885 (12) Å

  • c = 19.143 (3) Å

  • β = 106.812 (3)°

  • V = 1810.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.29 mm−1

  • T = 273 K

  • 0.10 × 0.10 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2007[Bruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.804, Tmax = 0.838

  • 7291 measured reflections

  • 2586 independent reflections

  • 1810 reflections with I > 2σ(I)

  • Rint = 0.033

  • θmax = 23.3°

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.147

  • S = 1.04

  • 2586 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.74 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.82 1.81 2.530 (5) 146
C4—H4⋯O2i 0.93 2.70 3.356 (7) 128
C19—H19⋯O1ii 0.93 2.69 3.404 (7) 134
Symmetry codes: (i) x, y+1, z; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The planar chiral Schiff bases have been used in many asymmetric reactions (Danilova et al., 2003). [2. 2]Paracyclophane present planar chirality due to its configurationally rigid structure (Hong et al., 2011). The salicyaldehyde derivative based on [2. 2]paracyclophane is the parent compound of various Schiff base ligands (Fache et al., 2000). We reported here the crystal structure of the title compound (I), which is a derivative of [2.2]paracyclophane.

In (I) (Fig. 1), all bond lengths and angles are normal and in agreement with those observed in the related structure (Hong et al., 2011). The mean planes A (C16-C21), B (C16/C15/O2), C (O2/C15/C14), D(C9-C14) and E (C1-C6) form the following dihedral angles: A/B 41.1 (2)°, C/D=18.4 (2)°, B/C=4.1 (2)° and D/E=1.6 (2)°. The hydroxy and carbonyl groups are involved in O—H···O hydrogen bonding (Table 1).

The crystal packing exhibits weak intermolecular C—H···O interactions (Table 1), which link the molecules into sheets parallel to bc palne.

Related literature top

For a related structure, see: Hong et al. (2011). For background to [2.2]paracyclophanes, see: Fache et al. (2000); Danilova et al. (2003). For details of the synthesis, see: Xin et al. (2010).

Experimental top

The title compound was prepared by the method reported by Xin et al. (2010). The crystals were obtained by recrystallization from EtOH.

Refinement top

All the H atoms were located in difference maps, but placed in idealized positions (O—H 0.82 Å, C—H 0.93–0.97 Å), and refined as riding, with Uiso(H) = 1.2-1.5 Ueq of the parent atom.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom numbering scheme and 50% probabilty displacement ellipsoids. The H atoms are omitted for clarity.
5-Benzoyl-13-bromo-4-hydroxy[2.2]paracyclophane top
Crystal data top
C23H19BrO2F(000) = 832
Mr = 407.29Dx = 1.494 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1805 reflections
a = 12.5250 (18) Åθ = 2.4–20.5°
b = 7.8885 (12) ŵ = 2.29 mm1
c = 19.143 (3) ÅT = 273 K
β = 106.812 (3)°Block, colourless
V = 1810.5 (5) Å30.10 × 0.10 × 0.08 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
2586 independent reflections
Radiation source: fine-focus sealed tube1810 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
phi and ω scansθmax = 23.3°, θmin = 1.7°
Absorption correction: numerical
(SADABS; Bruker, 2007)
h = 1213
Tmin = 0.804, Tmax = 0.838k = 78
7291 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0807P)2 + 0.9145P]
where P = (Fo2 + 2Fc2)/3
2586 reflections(Δ/σ)max = 0.006
236 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
C23H19BrO2V = 1810.5 (5) Å3
Mr = 407.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.5250 (18) ŵ = 2.29 mm1
b = 7.8885 (12) ÅT = 273 K
c = 19.143 (3) Å0.10 × 0.10 × 0.08 mm
β = 106.812 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
2586 independent reflections
Absorption correction: numerical
(SADABS; Bruker, 2007)
1810 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.838Rint = 0.033
7291 measured reflectionsθmax = 23.3°
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.04Δρmax = 0.59 e Å3
2586 reflectionsΔρmin = 0.74 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.94299 (6)0.03797 (10)1.18603 (3)0.1051 (4)
C130.6602 (3)0.0719 (6)1.0485 (2)0.0529 (11)
C100.6311 (3)0.3699 (6)0.9720 (2)0.0556 (11)
H100.61350.46960.94510.067*
O10.6717 (4)0.0722 (4)1.08778 (19)0.0844 (11)
H10.69520.14761.06670.127*
C90.6706 (3)0.2331 (5)0.9423 (2)0.0456 (10)
C120.6440 (3)0.2212 (6)1.0841 (2)0.0548 (11)
C50.8972 (3)0.2809 (7)1.0081 (2)0.0585 (12)
C110.6170 (3)0.3618 (6)1.0413 (3)0.0624 (13)
H110.58820.45561.05910.075*
C80.7383 (3)0.2704 (5)0.8900 (2)0.0546 (11)
H8A0.72190.38450.87100.066*
H8B0.71640.19240.84910.066*
C140.6714 (3)0.0746 (5)0.9773 (2)0.0486 (10)
C20.8655 (3)0.3001 (7)1.1481 (2)0.0579 (12)
C40.8811 (4)0.4355 (7)1.0375 (3)0.0698 (14)
H40.88160.53451.01130.084*
C60.9229 (3)0.1463 (7)1.0567 (2)0.0608 (12)
H60.94940.04601.04230.073*
C30.8642 (4)0.4442 (7)1.1062 (3)0.0680 (14)
H30.85170.54931.12440.082*
C160.6713 (4)0.1147 (5)0.8667 (2)0.0587 (12)
C150.6967 (4)0.0862 (6)0.9465 (3)0.0661 (13)
O20.7342 (5)0.2069 (5)0.9862 (2)0.1206 (17)
C70.8650 (4)0.2539 (7)0.9266 (2)0.0744 (15)
H7A0.88920.14190.91670.089*
H7B0.90380.33630.90520.089*
C170.7418 (5)0.2153 (6)0.8396 (3)0.0806 (15)
H170.80730.25930.87060.097*
C200.5464 (5)0.0899 (8)0.7459 (3)0.0811 (16)
H200.48040.04790.71460.097*
C210.5745 (4)0.0538 (6)0.8193 (3)0.0666 (14)
H210.52710.01290.83720.080*
C10.9105 (3)0.1569 (6)1.1249 (2)0.0586 (12)
C190.6139 (6)0.1852 (8)0.7194 (3)0.0922 (19)
H190.59460.20890.66970.111*
C180.7114 (7)0.2484 (7)0.7647 (4)0.096 (2)
H180.75770.31390.74540.115*
C220.6778 (4)0.2271 (7)1.1667 (2)0.0710 (14)
H22A0.67240.11381.18510.085*
H22B0.62570.29871.18190.085*
C230.7980 (4)0.2950 (7)1.2014 (2)0.0724 (14)
H23A0.79380.40831.22010.087*
H23B0.83550.22311.24230.087*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1093 (6)0.1234 (6)0.0873 (5)0.0489 (4)0.0358 (4)0.0560 (4)
C130.055 (3)0.053 (3)0.051 (3)0.009 (2)0.016 (2)0.004 (2)
C100.052 (3)0.046 (3)0.059 (3)0.008 (2)0.000 (2)0.000 (2)
O10.132 (3)0.060 (2)0.068 (2)0.011 (2)0.040 (2)0.0151 (18)
C90.050 (2)0.038 (2)0.043 (2)0.0016 (18)0.0045 (19)0.0004 (19)
C120.043 (2)0.070 (3)0.054 (3)0.000 (2)0.018 (2)0.008 (2)
C50.040 (2)0.081 (4)0.056 (3)0.003 (2)0.016 (2)0.010 (3)
C110.051 (3)0.061 (3)0.071 (3)0.015 (2)0.011 (2)0.016 (3)
C80.074 (3)0.043 (2)0.043 (2)0.003 (2)0.011 (2)0.0063 (19)
C140.058 (3)0.042 (3)0.044 (2)0.0009 (19)0.012 (2)0.0047 (19)
C20.046 (3)0.074 (3)0.047 (3)0.002 (2)0.003 (2)0.007 (2)
C40.063 (3)0.070 (4)0.071 (3)0.015 (3)0.011 (3)0.014 (3)
C60.049 (3)0.080 (4)0.057 (3)0.022 (2)0.020 (2)0.010 (3)
C30.061 (3)0.065 (3)0.070 (3)0.010 (2)0.007 (3)0.018 (3)
C160.086 (3)0.034 (2)0.061 (3)0.008 (2)0.029 (3)0.009 (2)
C150.098 (4)0.033 (3)0.067 (3)0.004 (2)0.024 (3)0.002 (2)
O20.235 (5)0.045 (2)0.079 (3)0.041 (3)0.040 (3)0.011 (2)
C70.068 (3)0.107 (4)0.055 (3)0.014 (3)0.028 (3)0.018 (3)
C170.110 (4)0.049 (3)0.094 (4)0.002 (3)0.047 (3)0.007 (3)
C200.095 (4)0.080 (4)0.071 (4)0.032 (3)0.027 (3)0.023 (3)
C210.078 (3)0.063 (3)0.065 (3)0.019 (3)0.030 (3)0.017 (3)
C10.045 (2)0.080 (4)0.049 (3)0.010 (2)0.011 (2)0.016 (2)
C190.133 (6)0.076 (4)0.076 (4)0.037 (4)0.042 (4)0.024 (3)
C180.157 (6)0.052 (4)0.111 (5)0.018 (4)0.092 (5)0.029 (3)
C220.069 (3)0.094 (4)0.057 (3)0.000 (3)0.029 (2)0.014 (3)
C230.070 (3)0.098 (4)0.050 (3)0.001 (3)0.019 (2)0.014 (3)
Geometric parameters (Å, º) top
Br1—C11.903 (5)C6—C11.362 (6)
C13—O11.348 (5)C6—H60.9300
C13—C121.405 (6)C3—H30.9300
C13—C141.411 (6)C16—C211.374 (6)
C10—C91.376 (6)C16—C171.394 (7)
C10—C111.390 (6)C16—C151.484 (6)
C10—H100.9300C15—O21.225 (5)
O1—H10.8200C15—O21.225 (5)
C9—C141.418 (6)O2—O20.000 (11)
C9—C81.516 (6)C7—H7A0.9700
C12—C111.362 (6)C7—H7B0.9700
C12—C221.513 (6)C17—C181.397 (8)
C5—C41.383 (7)C17—H170.9300
C5—C61.387 (6)C20—C191.336 (8)
C5—C71.508 (6)C20—C211.377 (6)
C11—H110.9300C20—H200.9300
C8—C71.544 (6)C21—H210.9300
C8—H8A0.9700C19—C181.370 (9)
C8—H8B0.9700C19—H190.9300
C14—C151.472 (6)C18—H180.9300
C2—C31.389 (7)C22—C231.554 (7)
C2—C11.391 (6)C22—H22A0.9700
C2—C231.503 (6)C22—H22B0.9700
C4—C31.392 (7)C23—H23A0.9700
C4—H40.9300C23—H23B0.9700
O1—C13—C12116.4 (4)O2—C15—O20.0 (4)
O1—C13—C14121.8 (4)O2—C15—C14120.6 (4)
C12—C13—C14121.7 (4)O2—C15—C14120.6 (4)
C9—C10—C11121.2 (4)O2—C15—C16116.8 (4)
C9—C10—H10119.4O2—C15—C16116.8 (4)
C11—C10—H10119.4C14—C15—C16122.4 (4)
C13—O1—H1109.5O2—O2—C150 (10)
C10—C9—C14116.8 (4)C5—C7—C8113.0 (4)
C10—C9—C8117.2 (4)C5—C7—H7A109.0
C14—C9—C8123.7 (4)C8—C7—H7A109.0
C11—C12—C13115.8 (4)C5—C7—H7B109.0
C11—C12—C22123.3 (4)C8—C7—H7B109.0
C13—C12—C22119.7 (4)H7A—C7—H7B107.8
C4—C5—C6115.7 (4)C16—C17—C18118.3 (6)
C4—C5—C7121.3 (5)C16—C17—H17120.8
C6—C5—C7121.8 (5)C18—C17—H17120.8
C12—C11—C10122.3 (4)C19—C20—C21120.0 (6)
C12—C11—H11118.8C19—C20—H20120.0
C10—C11—H11118.8C21—C20—H20120.0
C9—C8—C7112.4 (3)C16—C21—C20121.2 (5)
C9—C8—H8A109.1C16—C21—H21119.4
C7—C8—H8A109.1C20—C21—H21119.4
C9—C8—H8B109.1C6—C1—C2121.7 (4)
C7—C8—H8B109.1C6—C1—Br1118.4 (4)
H8A—C8—H8B107.9C2—C1—Br1119.6 (3)
C13—C14—C9118.8 (4)C20—C19—C18120.7 (6)
C13—C14—C15117.9 (4)C20—C19—H19119.6
C9—C14—C15122.9 (4)C18—C19—H19119.6
C3—C2—C1114.8 (4)C19—C18—C17120.7 (6)
C3—C2—C23120.0 (5)C19—C18—H18119.7
C1—C2—C23123.7 (5)C17—C18—H18119.7
C5—C4—C3120.6 (5)C12—C22—C23113.6 (4)
C5—C4—H4119.7C12—C22—H22A108.8
C3—C4—H4119.7C23—C22—H22A108.8
C1—C6—C5121.8 (5)C12—C22—H22B108.8
C1—C6—H6119.1C23—C22—H22B108.8
C5—C6—H6119.1H22A—C22—H22B107.7
C2—C3—C4121.7 (5)C2—C23—C22112.6 (4)
C2—C3—H3119.2C2—C23—H23A109.1
C4—C3—H3119.2C22—C23—H23A109.1
C21—C16—C17119.1 (5)C2—C23—H23B109.1
C21—C16—C15120.8 (4)C22—C23—H23B109.1
C17—C16—C15120.0 (5)H23A—C23—H23B107.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.812.530 (5)146
C4—H4···O2i0.932.703.356 (7)128
C19—H19···O1ii0.932.693.404 (7)134
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC23H19BrO2
Mr407.29
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)12.5250 (18), 7.8885 (12), 19.143 (3)
β (°) 106.812 (3)
V3)1810.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)2.29
Crystal size (mm)0.10 × 0.10 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionNumerical
(SADABS; Bruker, 2007)
Tmin, Tmax0.804, 0.838
No. of measured, independent and
observed [I > 2σ(I)] reflections
7291, 2586, 1810
Rint0.033
θmax (°)23.3
(sin θ/λ)max1)0.556
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.147, 1.04
No. of reflections2586
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.74

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O20.821.812.530 (5)146.3
C4—H4···O2i0.932.703.356 (7)128.3
C19—H19···O1ii0.932.693.404 (7)133.9
Symmetry codes: (i) x, y+1, z; (ii) x, y1/2, z1/2.
 

Acknowledgements

Financial support from the National Natural Science Foundation of China (grant No. 20671059) and the Department of Science and Technology of Shandong Province is gratefully acknowledged.

References

First citationBruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDanilova, T. I., Rozenberg, V. I., Sergeeva, E. I., Starikova, Z. A. & Bräse, S. (2003). Tetrahedron Asymmetry, 14, 2013–2019.  Web of Science CSD CrossRef CAS Google Scholar
First citationFache, F., Schultz, E., Tommasino, M. L. & Lemaire, M. (2000). Chem. Rev. 100, 2159–2231.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHong, B., Ma, Y., Duan, W., He, F. & Zhao, L. (2011). Acta Cryst. E67, o950.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXin, D. Y., Ma, Y. D. & He, F. Y. (2010). Tetrahedron Asymmetry, 21, 333–338.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1380
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds