organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1293

1-(4,5,6,7-Tetra­hydro­thieno[3,2-c]pyridin-5-yl)-2-{4-[3-(tri­fluoro­meth­yl)phen­yl]piperazin-1-yl}ethanone

aSchool of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China, bTianjin Textile Fiber Interface Processing Technology Engineering Center, Tianjin Polytechnic University, Tianjin 300160, People's Republic of China, and cTianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
*Correspondence e-mail: zhengguo@tjpu.edu.cn

(Received 19 March 2012; accepted 29 March 2012; online 4 April 2012)

In the title mol­ecule, C20H22F3N3OS, the piperazine ring has a chair conformation, and the N—C(=O)—C—N torsion angle is −59.42 (14)°. In the crystal, weak C—H⋯O and C—H⋯π inter­actions link the mol­ecules into layers parallel to (101).

Related literature

For details of the synthesis, see: Liu et al. (2008[Liu, D. K., Liu, Y., Liu, M., Zhang, S. J., Cheng, D., Jin, L. Y., Xu, W. R. & Liu, C. X. (2008). CN Patent 101284838A.]). For related structures, see: Niu et al. (2011[Niu, D., Huang, S.-Y., Wang, P.-B. & Liu, D.-K. (2011). Acta Cryst. E67, o2134.]); Zhi et al. (2011[Zhi, S., Zheng, G., Liu, Y., Wang, J. Y. & Liu, D. K. (2011). Chin. J. Synth. Chem. 6, 730-733.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22F3N3OS

  • Mr = 409.47

  • Monoclinic, C 2/c

  • a = 32.692 (6) Å

  • b = 6.3772 (11) Å

  • c = 18.215 (3) Å

  • β = 92.985 (2)°

  • V = 3792.5 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.958, Tmax = 0.975

  • 18550 measured reflections

  • 4523 independent reflections

  • 3449 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.097

  • S = 1.03

  • 4523 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C14–C19 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O1i 0.99 2.56 3.4709 (17) 153
C13—H13B⋯O1ii 0.99 2.60 3.3607 (16) 133
C16—H16⋯Cgiii 0.95 2.61 3.3641 (13) 136
Symmetry codes: (i) -x+2, -y+2, -z+1; (ii) x, y-1, z; (iii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]).

Supporting information


Comment top

As a continuation of structural studies of thienopyridine derivatives (Niu et al., 2011; Zhi et al., 2011), we present here the title compound (I), which exhibits the antiplatelet aggregation ratio higher than ticlopidine.

In (I) (Fig. 1), pyridine ring with a half chair conformation is linked into the piperazine ring exhibiting a chair conformation by N1—C8—C9—N2 with a torsion angle of -59.42 (14)°. The dihedral angles formed between the thiophene plane(A), the phenyl ring (B) and the C10—C11—C12—C13 plane (C) are 29.48 (6)° (AB), 41.19 (7)° (AC) and 13.77 (8)° (BC), respectively. In the crystal structure, weak intermolecular C—H···O and C—H···π interactions (Table 1) link the molecules into layers parallel to (101).

Related literature top

For details of the synthesis, see: Liu et al. (2008). For related structures, see: Niu et al. (2011); Zhi et al. (2011).

Experimental top

Chloracetyl chloride was dropwised into the mixture of 4,5,6,7-tetrahydrothieno[3,2-c]pyridine, TEA and dichloromethane at 268 K. After stirring for 3 h, the solvent was evaporated and a light yellow oily substance was obtained by silica gel column chromatography. The light yellow oily substance then reacted with 1-(3-(trifluoromethyl) phenyl)piperazine in a mixture of acetonitrile and TEA. After stirring for 7 h at room temperature, the compound (I) was obtained by silica gel column chromatography (Liu et al., 2008). Crystallization of the obtained yellow solid from acetone afforded light yellow crystals suitble for X-ray analysis.

Refinement top

The H atoms were positioned geometrically and refined using a riding model, with d(C—H)=0.95–0.99 Å, and Uiso(H)=1.2Ueq(C) of the parent atom.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I)showing the atom-numbering scheme and 50% probability displacement ellipsoids.
1-(4,5,6,7-Tetrahydrothieno[3,2-c]pyridin-5-yl)-2-{4-[3- (trifluoromethyl)phenyl]piperazin-1-yl}ethanone top
Crystal data top
C20H22F3N3OSF(000) = 1712
Mr = 409.47Dx = 1.434 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6174 reflections
a = 32.692 (6) Åθ = 1.2–27.9°
b = 6.3772 (11) ŵ = 0.22 mm1
c = 18.215 (3) ÅT = 113 K
β = 92.985 (2)°Prism, colourless
V = 3792.5 (11) Å30.20 × 0.18 × 0.12 mm
Z = 8
Data collection top
Rigaku Saturn724 CCD
diffractometer
4523 independent reflections
Radiation source: rotating anode3449 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.033
Detector resolution: 14.22 pixels mm-1θmax = 27.9°, θmin = 1.3°
ω and ϕ scansh = 4240
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 88
Tmin = 0.958, Tmax = 0.975l = 2323
18550 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0608P)2]
where P = (Fo2 + 2Fc2)/3
4523 reflections(Δ/σ)max = 0.005
253 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C20H22F3N3OSV = 3792.5 (11) Å3
Mr = 409.47Z = 8
Monoclinic, C2/cMo Kα radiation
a = 32.692 (6) ŵ = 0.22 mm1
b = 6.3772 (11) ÅT = 113 K
c = 18.215 (3) Å0.20 × 0.18 × 0.12 mm
β = 92.985 (2)°
Data collection top
Rigaku Saturn724 CCD
diffractometer
4523 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3449 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.975Rint = 0.033
18550 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.097H-atom parameters constrained
S = 1.03Δρmax = 0.33 e Å3
4523 reflectionsΔρmin = 0.33 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.129431 (9)0.80354 (5)0.452757 (18)0.02545 (10)
F10.76604 (3)0.73309 (12)0.07407 (4)0.0338 (2)
F20.72213 (2)0.48600 (13)0.05611 (5)0.0396 (2)
F30.78186 (3)0.46014 (14)0.01330 (4)0.0394 (2)
O10.97125 (3)1.18330 (14)0.40862 (6)0.0298 (2)
N11.00374 (3)0.91401 (16)0.35494 (6)0.0198 (2)
N20.92131 (3)0.71911 (15)0.37376 (6)0.0174 (2)
N30.84845 (3)0.54625 (15)0.30117 (5)0.0170 (2)
C11.14276 (4)1.0434 (2)0.41862 (8)0.0293 (3)
H11.16871.10770.42800.035*
C21.11183 (4)1.1299 (2)0.37667 (7)0.0266 (3)
H21.11371.26190.35290.032*
C31.07608 (3)1.0008 (2)0.37202 (7)0.0206 (3)
C41.03599 (4)1.0538 (2)0.33102 (7)0.0238 (3)
H4A1.02861.20130.34080.029*
H4B1.03891.03780.27750.029*
C51.01539 (4)0.69138 (19)0.35519 (7)0.0215 (3)
H5A1.02550.65240.30670.026*
H5B0.99120.60360.36420.026*
C61.04896 (4)0.6520 (2)0.41531 (7)0.0221 (3)
H6A1.03720.65640.46430.026*
H6B1.06120.51180.40870.026*
C71.08114 (3)0.81855 (19)0.41028 (7)0.0198 (3)
C80.97449 (4)0.99396 (19)0.39714 (7)0.0194 (3)
C90.94467 (4)0.84037 (19)0.42992 (7)0.0201 (3)
H9A0.96020.74260.46320.024*
H9B0.92540.91930.45970.024*
C100.89218 (4)0.85104 (19)0.33157 (7)0.0207 (3)
H10A0.90690.96900.30950.025*
H10B0.87210.91030.36480.025*
C110.86980 (4)0.72588 (19)0.27125 (7)0.0212 (3)
H11A0.84980.81760.24420.025*
H11B0.88970.67580.23600.025*
C120.87583 (4)0.4201 (2)0.35010 (7)0.0240 (3)
H12A0.89620.34790.32060.029*
H12B0.85960.31160.37440.029*
C130.89803 (4)0.55328 (19)0.40811 (7)0.0232 (3)
H13A0.87790.61660.44040.028*
H13B0.91690.46420.43890.028*
C140.82152 (3)0.43532 (18)0.25274 (6)0.0163 (2)
C150.80737 (3)0.23339 (18)0.26919 (7)0.0183 (3)
H150.81720.16660.31330.022*
C160.77936 (3)0.12972 (19)0.22235 (7)0.0192 (3)
H160.77070.00750.23470.023*
C170.76363 (4)0.22165 (18)0.15800 (7)0.0193 (3)
H170.74410.15100.12640.023*
C180.77749 (3)0.42091 (18)0.14144 (6)0.0179 (2)
C190.80626 (3)0.52536 (18)0.18650 (6)0.0173 (2)
H190.81580.65950.17240.021*
C200.76198 (4)0.5249 (2)0.07173 (7)0.0233 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01591 (16)0.0367 (2)0.02358 (18)0.00031 (13)0.00047 (12)0.00149 (14)
F10.0528 (5)0.0192 (4)0.0272 (4)0.0012 (3)0.0169 (4)0.0034 (3)
F20.0294 (4)0.0463 (5)0.0411 (5)0.0079 (4)0.0182 (4)0.0124 (4)
F30.0558 (5)0.0456 (5)0.0166 (4)0.0109 (4)0.0013 (4)0.0002 (4)
O10.0313 (5)0.0203 (5)0.0382 (6)0.0007 (4)0.0039 (4)0.0036 (4)
N10.0175 (5)0.0211 (5)0.0205 (5)0.0011 (4)0.0016 (4)0.0002 (4)
N20.0159 (5)0.0179 (5)0.0180 (5)0.0004 (4)0.0035 (4)0.0012 (4)
N30.0172 (5)0.0158 (5)0.0175 (5)0.0016 (4)0.0039 (4)0.0039 (4)
C10.0185 (6)0.0419 (8)0.0278 (7)0.0089 (6)0.0047 (5)0.0034 (6)
C20.0240 (6)0.0319 (7)0.0245 (7)0.0068 (6)0.0067 (5)0.0006 (6)
C30.0184 (6)0.0268 (6)0.0166 (6)0.0019 (5)0.0026 (5)0.0033 (5)
C40.0221 (6)0.0272 (7)0.0220 (6)0.0042 (5)0.0006 (5)0.0030 (5)
C50.0198 (6)0.0220 (6)0.0224 (7)0.0009 (5)0.0014 (5)0.0057 (5)
C60.0202 (6)0.0205 (6)0.0253 (7)0.0019 (5)0.0014 (5)0.0020 (5)
C70.0160 (6)0.0256 (6)0.0176 (6)0.0004 (5)0.0005 (5)0.0049 (5)
C80.0178 (6)0.0220 (6)0.0179 (6)0.0004 (5)0.0056 (5)0.0009 (5)
C90.0190 (6)0.0227 (6)0.0184 (6)0.0001 (5)0.0016 (5)0.0022 (5)
C100.0221 (6)0.0159 (6)0.0236 (7)0.0005 (5)0.0046 (5)0.0021 (5)
C110.0236 (6)0.0178 (6)0.0215 (6)0.0050 (5)0.0062 (5)0.0054 (5)
C120.0275 (6)0.0179 (6)0.0256 (7)0.0021 (5)0.0096 (5)0.0072 (5)
C130.0238 (6)0.0232 (6)0.0216 (6)0.0037 (5)0.0073 (5)0.0066 (5)
C140.0135 (5)0.0172 (6)0.0181 (6)0.0019 (4)0.0015 (4)0.0003 (5)
C150.0171 (5)0.0179 (6)0.0198 (6)0.0012 (5)0.0010 (5)0.0028 (5)
C160.0187 (6)0.0153 (6)0.0240 (6)0.0010 (4)0.0042 (5)0.0007 (5)
C170.0185 (6)0.0191 (6)0.0201 (6)0.0006 (5)0.0003 (5)0.0043 (5)
C180.0190 (6)0.0192 (6)0.0156 (6)0.0022 (4)0.0002 (5)0.0006 (5)
C190.0183 (5)0.0152 (6)0.0182 (6)0.0003 (4)0.0003 (5)0.0017 (5)
C200.0284 (7)0.0209 (7)0.0197 (6)0.0021 (5)0.0053 (5)0.0021 (5)
Geometric parameters (Å, º) top
S1—C11.7161 (14)C6—H6A0.9900
S1—C71.7241 (12)C6—H6B0.9900
F1—C201.3350 (14)C8—C91.5254 (17)
F2—C201.3420 (14)C9—H9A0.9900
F3—C201.3407 (15)C9—H9B0.9900
O1—C81.2309 (15)C10—C111.5153 (16)
N1—C81.3571 (15)C10—H10A0.9900
N1—C41.4644 (16)C10—H10B0.9900
N1—C51.4699 (16)C11—H11A0.9900
N2—C101.4591 (15)C11—H11B0.9900
N2—C131.4624 (15)C12—C131.5114 (17)
N2—C91.4651 (15)C12—H12A0.9900
N3—C141.4047 (15)C12—H12B0.9900
N3—C111.4617 (15)C13—H13A0.9900
N3—C121.4695 (15)C13—H13B0.9900
C1—C21.3528 (19)C14—C191.4041 (16)
C1—H10.9500C14—C151.4059 (16)
C2—C31.4288 (17)C15—C161.3865 (17)
C2—H20.9500C15—H150.9500
C3—C71.3606 (18)C16—C171.3854 (17)
C3—C41.5124 (17)C16—H160.9500
C4—H4A0.9900C17—C181.3877 (17)
C4—H4B0.9900C17—H170.9500
C5—C61.5301 (17)C18—C191.3860 (16)
C5—H5A0.9900C18—C201.4973 (17)
C5—H5B0.9900C19—H190.9500
C6—C71.5013 (17)
C1—S1—C791.82 (6)N2—C10—C11110.82 (10)
C8—N1—C4118.63 (11)N2—C10—H10A109.5
C8—N1—C5123.45 (10)C11—C10—H10A109.5
C4—N1—C5113.49 (10)N2—C10—H10B109.5
C10—N2—C13107.61 (9)C11—C10—H10B109.5
C10—N2—C9111.45 (9)H10A—C10—H10B108.1
C13—N2—C9110.30 (10)N3—C11—C10111.36 (10)
C14—N3—C11117.15 (10)N3—C11—H11A109.4
C14—N3—C12116.58 (10)C10—C11—H11A109.4
C11—N3—C12111.56 (9)N3—C11—H11B109.4
C2—C1—S1111.82 (10)C10—C11—H11B109.4
C2—C1—H1124.1H11A—C11—H11B108.0
S1—C1—H1124.1N3—C12—C13111.82 (10)
C1—C2—C3112.56 (12)N3—C12—H12A109.3
C1—C2—H2123.7C13—C12—H12A109.3
C3—C2—H2123.7N3—C12—H12B109.3
C7—C3—C2112.61 (11)C13—C12—H12B109.3
C7—C3—C4121.55 (11)H12A—C12—H12B107.9
C2—C3—C4125.83 (12)N2—C13—C12110.42 (10)
N1—C4—C3109.61 (10)N2—C13—H13A109.6
N1—C4—H4A109.7C12—C13—H13A109.6
C3—C4—H4A109.7N2—C13—H13B109.6
N1—C4—H4B109.7C12—C13—H13B109.6
C3—C4—H4B109.7H13A—C13—H13B108.1
H4A—C4—H4B108.2C19—C14—N3121.12 (10)
N1—C5—C6109.69 (10)C19—C14—C15116.85 (10)
N1—C5—H5A109.7N3—C14—C15121.99 (10)
C6—C5—H5A109.7C16—C15—C14121.31 (11)
N1—C5—H5B109.7C16—C15—H15119.3
C6—C5—H5B109.7C14—C15—H15119.3
H5A—C5—H5B108.2C17—C16—C15121.54 (11)
C7—C6—C5108.60 (11)C17—C16—H16119.2
C7—C6—H6A110.0C15—C16—H16119.2
C5—C6—H6A110.0C16—C17—C18117.41 (11)
C7—C6—H6B110.0C16—C17—H17121.3
C5—C6—H6B110.0C18—C17—H17121.3
H6A—C6—H6B108.4C19—C18—C17122.05 (11)
C3—C7—C6124.64 (11)C19—C18—C20118.61 (10)
C3—C7—S1111.19 (9)C17—C18—C20119.32 (11)
C6—C7—S1124.17 (10)C18—C19—C14120.80 (11)
O1—C8—N1122.29 (12)C18—C19—H19119.6
O1—C8—C9120.06 (11)C14—C19—H19119.6
N1—C8—C9117.65 (11)F1—C20—F3106.27 (11)
N2—C9—C8112.71 (10)F1—C20—F2106.51 (10)
N2—C9—H9A109.0F3—C20—F2106.27 (10)
C8—C9—H9A109.0F1—C20—C18112.62 (10)
N2—C9—H9B109.0F3—C20—C18112.34 (10)
C8—C9—H9B109.0F2—C20—C18112.35 (11)
H9A—C9—H9B107.8
C7—S1—C1—C20.21 (11)C14—N3—C11—C10170.67 (10)
S1—C1—C2—C30.45 (15)C12—N3—C11—C1051.32 (14)
C1—C2—C3—C70.53 (17)N2—C10—C11—N357.59 (13)
C1—C2—C3—C4178.54 (12)C14—N3—C12—C13170.23 (10)
C8—N1—C4—C3108.44 (12)C11—N3—C12—C1351.50 (14)
C5—N1—C4—C348.79 (14)C10—N2—C13—C1261.50 (13)
C7—C3—C4—N114.37 (17)C9—N2—C13—C12176.74 (10)
C2—C3—C4—N1164.62 (12)N3—C12—C13—N257.23 (14)
C8—N1—C5—C687.88 (13)C11—N3—C14—C1918.70 (16)
C4—N1—C5—C668.10 (13)C12—N3—C14—C19154.62 (11)
N1—C5—C6—C746.98 (13)C11—N3—C14—C15163.73 (11)
C2—C3—C7—C6179.84 (11)C12—N3—C14—C1527.81 (16)
C4—C3—C7—C61.05 (19)C19—C14—C15—C160.63 (17)
C2—C3—C7—S10.36 (14)N3—C14—C15—C16177.05 (11)
C4—C3—C7—S1178.75 (10)C14—C15—C16—C171.02 (18)
C5—C6—C7—C315.39 (17)C15—C16—C17—C181.02 (17)
C5—C6—C7—S1164.84 (9)C16—C17—C18—C190.64 (17)
C1—S1—C7—C30.09 (10)C16—C17—C18—C20178.81 (11)
C1—S1—C7—C6179.89 (11)C17—C18—C19—C142.33 (18)
C4—N1—C8—O18.89 (18)C20—C18—C19—C14179.49 (10)
C5—N1—C8—O1163.72 (11)N3—C14—C19—C18175.44 (10)
C4—N1—C8—C9171.93 (10)C15—C14—C19—C182.25 (17)
C5—N1—C8—C917.10 (16)C19—C18—C20—F123.30 (16)
C10—N2—C9—C869.20 (13)C17—C18—C20—F1158.47 (11)
C13—N2—C9—C8171.33 (9)C19—C18—C20—F396.66 (13)
O1—C8—C9—N2119.78 (12)C17—C18—C20—F381.57 (14)
N1—C8—C9—N259.42 (14)C19—C18—C20—F2143.58 (11)
C13—N2—C10—C1161.83 (13)C17—C18—C20—F238.19 (16)
C9—N2—C10—C11177.12 (10)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.992.563.4709 (17)153
C13—H13B···O1ii0.992.603.3607 (16)133
C16—H16···Cgiii0.952.613.3641 (13)136
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y1, z; (iii) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H22F3N3OS
Mr409.47
Crystal system, space groupMonoclinic, C2/c
Temperature (K)113
a, b, c (Å)32.692 (6), 6.3772 (11), 18.215 (3)
β (°) 92.985 (2)
V3)3792.5 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn724 CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.958, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
18550, 4523, 3449
Rint0.033
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.097, 1.03
No. of reflections4523
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.33

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C14–C19 ring.
D—H···AD—HH···AD···AD—H···A
C6—H6A···O1i0.992.563.4709 (17)153.1
C13—H13B···O1ii0.992.603.3607 (16)133.4
C16—H16···Cgiii0.952.613.3641 (13)136
Symmetry codes: (i) x+2, y+2, z+1; (ii) x, y1, z; (iii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Mr Hai-Bin Song of Nankai University for the X-ray crystallographic determination and for helpful suggestions.

References

First citationLiu, D. K., Liu, Y., Liu, M., Zhang, S. J., Cheng, D., Jin, L. Y., Xu, W. R. & Liu, C. X. (2008). CN Patent 101284838A.  Google Scholar
First citationNiu, D., Huang, S.-Y., Wang, P.-B. & Liu, D.-K. (2011). Acta Cryst. E67, o2134.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhi, S., Zheng, G., Liu, Y., Wang, J. Y. & Liu, D. K. (2011). Chin. J. Synth. Chem. 6, 730-733.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1293
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds