organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1423-o1424

9,10-Dioxoanthracene-1,4-diyl bis­­(4-methyl­benzene­sulfonate)

aResearch Centre for Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand, bProgram of Bachelor of Science in Applied Chemistry (BSAC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand, cComputational Chemistry Unit Cell, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand, and dCenter of Petroleum, Petrochemicals and Advanced Materials, Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
*Correspondence e-mail: nongnuj.j@chula.ac.th

(Received 20 March 2012; accepted 11 April 2012; online 18 April 2012)

The title mol­ecule, C28H20O8S2, has a T-shaped conformation. The central 9,10-anthraquinone moiety is bow-shaped with the two outer aromatic rings being inclined to one another by 13.99 (11)°. The benzenesulfonate rings are inclined to one another by 47.35 (12)°, and by 34.51 (11) and 17.88 (11)° to the bridging aromatic ring of the 9,10-anthraquinone moiety. In the crystal, C—H⋯O interactions link the mol­ecules into ribbons in [100].

Related literature

For background to the structures of anthraquinones and their biological activity, see: Zielske (1987[Zielske, A. G. (1987). J. Org. Chem. 52, 1305-1309.]); Yatsenko et al. (2000[Yatsenko, A. V., Chernyshev, V. V., Popov, S. I., Sonneveld, E. J. & Schenk, H. (2000). Dyes Pigm. 45, 169-176.]); Huang et al. (2004[Huang, S. H., Chiu, H. F., Lee, A. L., Guo, C. L. & Yuan, C. L. (2004). Bioorg. Med. Chem. 12, 6163-6170.]); Meng et al. (2005[Meng, Q., Zhang, W., Yu, J. & Huang, D. (2005). Dyes Pigm. 65, 281-283.]); García-Sosa et al. (2006[García-Sosa, K., Villarreal-Alvarez, N., Lübben, P. & Peña-Rodríguez, L. M. (2006). J. Mex. Chem. Soc. 50, 76-78.]); Cho et al. (2006[Cho, E. J., Yeo, H. M., Ryu, B. J., Jeong, H. A. & Nam, K. C. (2006). Bull. Korean Chem. Soc. 27, 1967-1968.]); Carland et al. (2010[Carland, M., Grannas, M. J., Cairns, M. J., Roknic, V. J., Denny, W. A., McFadyen, W. D. & Murray, V. (2010). J. Inorg. Biochem. 104, 815-819.]). For related structures, see: Swaminathan & Nigam (1967[Swaminathan, S. & Nigam, G. D. (1967). Curr. Sci. 36, 541.]); Cao et al. (2007[Cao, L.-P., Wang, Y.-Z., Gao, M. & Zhou, B.-H. (2007). Acta Cryst. E63, o1876-o1877.]).

[Scheme 1]

Experimental

Crystal data
  • C28H20O8S2

  • Mr = 548.56

  • Triclinic, [P \overline 1]

  • a = 9.6796 (2) Å

  • b = 10.9426 (3) Å

  • c = 13.1833 (4) Å

  • α = 111.122 (1)°

  • β = 90.961 (1)°

  • γ = 107.190 (1)°

  • V = 1232.41 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.35 × 0.20 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker, (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.912, Tmax = 0.948

  • 12983 measured reflections

  • 5616 independent reflections

  • 3997 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.127

  • S = 1.02

  • 5616 reflections

  • 343 parameters

  • 346 restraints

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O4i 0.93 2.48 3.333 (3) 153
C3—H3⋯O8ii 0.93 2.49 3.245 (3) 139
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2008[Bruker, (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker, (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Anthraquinone and its derivatives have been studies in the many fields, for example, antimicrobial and antibiotic activity (García-Sosa et al., 2006), anticancer agents (Huang, et al., 2004; Carland et al., 2010). Additionally, both of unsubstituted and substituted anthraquinone play an important role in various photochemical and colorimetric sensor systems (Cho et al., 2006). The natural extracts or synthetic anthraquinones have been used in the field of dyes and pigments (Meng et al., 2005; Yatsenko et al., 2000; Cao et al., 2007).

1,4-Bis(hydroxy)anthraquinone is one of an important anthraquinone starting materials for preparation the various anthraquinone dyes and pigments (Zielske, 1987). In this work, we report the intermediate of an anthraquinone dye with the two symmetric tosylate substituents.

The molecular structure of 1,4-bis(tosyloxy)anthraquinone consisting of the two tosylate groups substituted at 1,4-positions of anthraquinone core, has a dragonfly-like conformation with the stranded 9,10-anthraquinone fragment. The anthraquinone plane is distorted by 0.1814 Å from the mean plane defined by 16 atoms becuase of the steric effect of two substitued tosyl groups. The O1 and O2 atoms were deviatated from the anthraquinone mean plane with the distances of -0.2736 (16) Å and -0.1467 (15) Å, respectively, which are respectively in the normal range for the distortion of oxyquinone reported for 1,4-bis(hydroxy)anthraquinone (Swaminathan et al., 1967). Additionally, the moderate intermolecular hydrogen bonds of sp2C—H···O have been investigated between the hydrogen atom bound the aromatic carbon inside quinone ring, and the oxygen atom at the sulfonate group in the p-toluenesulfonate moiety as Figure 2. The distance of C(7)—H(7)···O(4) is 3.333 (3) Å and C(3)—H(3)···O(8) is 3.245 (3) Å that showed in the Table 1. In the crystal structure, non-classical intermolecular C—H···O hydrogen bonds link molecules into ribbons in [100].

Related literature top

For background to the structures of anthraquinones and their biological activity, see: Zielske (1987); Yatsenko et al. (2000); Huang et al. (2004); Meng et al. (2005); García-Sosa et al. (2006); Cho et al. (2006); Carland et al. (2010). For related structures, see: Swaminathan & Nigam (1967); Cao et al. (2007).

Experimental top

1,4-Bis(tosyloxy)anthraquinone was prepared by a stirred solution of 1,4-bis(hydroxyl)anthraquinone or quinizarin (0.241 g, 1.00 mmol) in 25 mL of dry dichloromethane was added triethylamine (0.205 g, 2.03 mmol) and p-toluenesulfonyl chloride (0.383 g, 2.01 mmol). The solution was stirred at room temperature for 24 hours. The precipitate was filtered off and then washed with water and dried over magnesium sulfate. Filtration of slurry gave a bright yellow-green solid. The final product was recrystallized in hexane:dichloromethane using slow evaporation which was suitable for X-ray diffraction analysis. Additionally, 1H of 1,4-bis(tosyloxy)anthraquinone were recorded in CDCl3 solution on a Varian Mercury Plus 400 spectrometer. 1H NMR spectrum (δ, ppm): 7.94-8.02 (2H,m); 7.69-7.91 (6H,m); 7.45 (2H,s); 7.24-7.33 (4H,m); 2.35 (6H,s) (Zielske et al., 1987).

Refinement top

All H-atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl), and Uiso(H) = 1.2–1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
9,10-Dioxoanthracene-1,4-diyl bis(4-methylbenzenesulfonate) top
Crystal data top
C28H20O8S2Z = 2
Mr = 548.56F(000) = 568
Triclinic, P1Dx = 1.478 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6796 (2) ÅCell parameters from 3943 reflections
b = 10.9426 (3) Åθ = 2.6–27.1°
c = 13.1833 (4) ŵ = 0.27 mm1
α = 111.122 (1)°T = 296 K
β = 90.961 (1)°Block, yellow–orange
γ = 107.190 (1)°0.35 × 0.20 × 0.20 mm
V = 1232.41 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
5616 independent reflections
Radiation source: fine-focus sealed tube3997 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 912
Tmin = 0.912, Tmax = 0.948k = 1414
12983 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0564P)2 + 0.3809P]
where P = (Fo2 + 2Fc2)/3
5616 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.28 e Å3
346 restraintsΔρmin = 0.30 e Å3
Crystal data top
C28H20O8S2γ = 107.190 (1)°
Mr = 548.56V = 1232.41 (6) Å3
Triclinic, P1Z = 2
a = 9.6796 (2) ÅMo Kα radiation
b = 10.9426 (3) ŵ = 0.27 mm1
c = 13.1833 (4) ÅT = 296 K
α = 111.122 (1)°0.35 × 0.20 × 0.20 mm
β = 90.961 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
5616 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
3997 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.948Rint = 0.031
12983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044346 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.02Δρmax = 0.28 e Å3
5616 reflectionsΔρmin = 0.30 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0724 (2)0.3607 (2)0.30321 (17)0.0455 (5)
C20.2026 (2)0.2898 (2)0.37289 (19)0.0540 (5)
H20.26120.33770.38590.065*
C30.2451 (2)0.1479 (2)0.42300 (19)0.0526 (5)
H30.33370.09920.46880.063*
C40.1559 (2)0.07826 (19)0.40504 (16)0.0410 (4)
C4A0.0214 (2)0.14744 (19)0.33781 (15)0.0381 (4)
C50.3343 (2)0.0885 (3)0.2748 (2)0.0572 (6)
H50.30970.00600.31570.069*
C5A0.2305 (2)0.1552 (2)0.26945 (16)0.0441 (4)
C60.4726 (3)0.1623 (3)0.2197 (2)0.0700 (7)
H60.54250.11830.22510.084*
C70.5085 (3)0.3014 (3)0.1565 (2)0.0713 (7)
H70.60160.35010.11730.086*
C80.4074 (3)0.3691 (3)0.1510 (2)0.0616 (6)
H80.43250.46320.10840.074*
C8A0.2675 (2)0.2962 (2)0.20916 (17)0.0457 (5)
C90.1623 (2)0.3716 (2)0.20721 (17)0.0465 (5)
C9A0.0210 (2)0.29290 (19)0.28346 (16)0.0404 (4)
C100.0799 (2)0.0713 (2)0.32586 (16)0.0426 (4)
C110.0130 (2)0.7359 (2)0.09847 (17)0.0465 (5)
C120.0189 (3)0.8400 (2)0.13582 (17)0.0508 (5)
H120.04870.82510.19350.061*
C130.1266 (3)0.9662 (2)0.08608 (19)0.0571 (6)
H130.13061.03670.11070.068*
C140.2286 (3)0.9906 (2)0.00061 (19)0.0575 (6)
C150.2168 (3)0.8849 (3)0.0367 (2)0.0693 (7)
H150.28220.90080.09610.083*
C160.1114 (3)0.7576 (2)0.0115 (2)0.0619 (6)
H160.10630.68750.01390.074*
C170.3479 (3)1.1281 (3)0.0518 (2)0.0844 (9)
H17A0.33921.18830.01590.127*
H17B0.33921.16920.12820.127*
H17C0.44131.11440.04470.127*
C180.3179 (2)0.32113 (19)0.50215 (16)0.0406 (4)
C190.4237 (2)0.4068 (2)0.59098 (17)0.0491 (5)
H190.49890.37770.60820.059*
C200.4172 (3)0.5357 (2)0.65400 (19)0.0552 (5)
H200.48940.59400.71330.066*
C210.3059 (2)0.5800 (2)0.6309 (2)0.0533 (5)
C220.2026 (3)0.4927 (2)0.5408 (2)0.0627 (6)
H220.12800.52230.52340.075*
C230.2062 (2)0.3635 (2)0.4759 (2)0.0568 (6)
H230.13500.30610.41580.068*
C240.2962 (3)0.7192 (2)0.7032 (3)0.0808 (9)
H24A0.37680.76520.76150.121*
H24B0.20620.70650.73370.121*
H24C0.29950.77440.66030.121*
O10.19121 (19)0.49172 (16)0.14755 (15)0.0704 (5)
O20.04323 (17)0.05362 (15)0.36092 (15)0.0641 (4)
O30.03027 (16)0.50532 (13)0.25827 (12)0.0530 (4)
O40.14116 (19)0.49740 (17)0.09439 (14)0.0711 (5)
O50.24035 (19)0.58494 (17)0.21518 (16)0.0765 (5)
O60.19989 (14)0.06504 (13)0.46365 (11)0.0434 (3)
O70.2846 (2)0.12386 (17)0.30826 (13)0.0737 (5)
O80.46239 (17)0.14656 (16)0.45212 (16)0.0697 (5)
S10.32770 (6)0.15885 (5)0.42096 (4)0.04743 (15)
S20.11835 (6)0.57384 (5)0.16304 (5)0.05089 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0499 (11)0.0367 (10)0.0512 (12)0.0144 (9)0.0099 (9)0.0180 (9)
C20.0514 (12)0.0494 (12)0.0672 (14)0.0226 (10)0.0022 (11)0.0240 (11)
C30.0479 (12)0.0505 (12)0.0569 (13)0.0156 (10)0.0032 (10)0.0186 (10)
C40.0441 (10)0.0368 (10)0.0396 (10)0.0109 (8)0.0060 (8)0.0135 (8)
C4A0.0397 (10)0.0376 (10)0.0388 (10)0.0116 (8)0.0063 (8)0.0173 (8)
C50.0518 (13)0.0649 (14)0.0626 (14)0.0238 (11)0.0065 (10)0.0291 (12)
C5A0.0416 (10)0.0503 (11)0.0449 (11)0.0135 (9)0.0056 (8)0.0244 (9)
C60.0480 (13)0.0900 (19)0.0858 (19)0.0270 (13)0.0071 (12)0.0454 (16)
C70.0408 (13)0.0908 (19)0.0818 (18)0.0077 (13)0.0053 (12)0.0438 (16)
C80.0501 (13)0.0571 (14)0.0672 (15)0.0024 (11)0.0046 (11)0.0246 (12)
C8A0.0405 (10)0.0500 (11)0.0461 (11)0.0073 (9)0.0040 (8)0.0236 (9)
C90.0465 (11)0.0404 (11)0.0471 (11)0.0076 (9)0.0052 (9)0.0158 (9)
C9A0.0403 (10)0.0390 (10)0.0413 (10)0.0106 (8)0.0073 (8)0.0164 (8)
C100.0428 (11)0.0412 (11)0.0455 (11)0.0130 (9)0.0052 (8)0.0188 (9)
C110.0506 (11)0.0455 (11)0.0435 (11)0.0206 (9)0.0048 (9)0.0130 (9)
C120.0610 (13)0.0517 (12)0.0408 (11)0.0234 (10)0.0063 (10)0.0148 (9)
C130.0756 (16)0.0475 (12)0.0499 (13)0.0205 (11)0.0191 (11)0.0198 (10)
C140.0603 (14)0.0511 (13)0.0481 (13)0.0153 (11)0.0129 (10)0.0061 (10)
C150.0736 (17)0.0646 (15)0.0578 (15)0.0224 (13)0.0144 (12)0.0108 (12)
C160.0776 (17)0.0521 (13)0.0565 (14)0.0241 (12)0.0045 (12)0.0195 (11)
C170.0779 (19)0.0662 (17)0.0752 (19)0.0004 (14)0.0121 (15)0.0069 (14)
C180.0389 (10)0.0387 (10)0.0435 (10)0.0094 (8)0.0053 (8)0.0174 (8)
C190.0446 (11)0.0488 (12)0.0517 (12)0.0149 (9)0.0005 (9)0.0173 (10)
C200.0555 (13)0.0462 (12)0.0507 (13)0.0090 (10)0.0001 (10)0.0097 (10)
C210.0504 (12)0.0403 (11)0.0685 (15)0.0115 (9)0.0218 (11)0.0218 (10)
C220.0486 (13)0.0565 (14)0.0903 (18)0.0228 (11)0.0054 (12)0.0318 (13)
C230.0488 (12)0.0510 (13)0.0645 (14)0.0116 (10)0.0071 (10)0.0194 (11)
C240.0789 (19)0.0469 (14)0.111 (2)0.0224 (13)0.0374 (17)0.0217 (14)
O10.0628 (11)0.0473 (9)0.0759 (12)0.0118 (8)0.0066 (9)0.0008 (8)
O20.0574 (10)0.0394 (8)0.0900 (12)0.0142 (7)0.0070 (8)0.0204 (8)
O30.0605 (9)0.0348 (7)0.0639 (9)0.0163 (7)0.0168 (7)0.0181 (7)
O40.0729 (11)0.0681 (11)0.0697 (11)0.0077 (9)0.0174 (9)0.0350 (9)
O50.0566 (10)0.0625 (11)0.0955 (14)0.0258 (8)0.0134 (9)0.0091 (9)
O60.0448 (8)0.0353 (7)0.0423 (7)0.0068 (6)0.0057 (6)0.0108 (6)
O70.1037 (14)0.0592 (10)0.0436 (9)0.0113 (9)0.0181 (9)0.0147 (7)
O80.0432 (9)0.0529 (9)0.1090 (14)0.0186 (7)0.0147 (9)0.0240 (9)
S10.0476 (3)0.0408 (3)0.0491 (3)0.0111 (2)0.0124 (2)0.0141 (2)
S20.0477 (3)0.0467 (3)0.0563 (3)0.0174 (2)0.0067 (2)0.0158 (2)
Geometric parameters (Å, º) top
C1—C21.379 (3)C13—C141.381 (3)
C1—O31.399 (2)C13—H130.9300
C1—C9A1.401 (3)C14—C151.387 (4)
C2—C31.375 (3)C14—C171.507 (3)
C2—H20.9300C15—C161.373 (3)
C3—C41.376 (3)C15—H150.9300
C3—H30.9300C16—H160.9300
C4—C4A1.396 (3)C17—H17A0.9600
C4—O61.399 (2)C17—H17B0.9600
C4A—C9A1.413 (3)C17—H17C0.9600
C4A—C101.500 (3)C18—C191.379 (3)
C5—C61.370 (3)C18—C231.380 (3)
C5—C5A1.395 (3)C18—S11.744 (2)
C5—H50.9300C19—C201.376 (3)
C5A—C8A1.385 (3)C19—H190.9300
C5A—C101.484 (3)C20—C211.375 (3)
C6—C71.376 (4)C20—H200.9300
C6—H60.9300C21—C221.378 (3)
C7—C81.380 (4)C21—C241.510 (3)
C7—H70.9300C22—C231.375 (3)
C8—C8A1.394 (3)C22—H220.9300
C8—H80.9300C23—H230.9300
C8A—C91.484 (3)C24—H24A0.9600
C9—O11.206 (2)C24—H24B0.9600
C9—C9A1.502 (3)C24—H24C0.9600
C10—O21.209 (2)O3—S21.6126 (15)
C11—C121.383 (3)O4—S21.4180 (17)
C11—C161.383 (3)O5—S21.4140 (18)
C11—S21.740 (2)O6—S11.6094 (14)
C12—C131.377 (3)O7—S11.4153 (18)
C12—H120.9300O8—S11.4185 (17)
C2—C1—O3117.61 (18)C13—C14—C17121.2 (2)
C2—C1—C9A122.05 (18)C15—C14—C17120.9 (2)
O3—C1—C9A120.18 (18)C16—C15—C14122.0 (2)
C3—C2—C1119.6 (2)C16—C15—H15119.0
C3—C2—H2120.2C14—C15—H15119.0
C1—C2—H2120.2C15—C16—C11118.5 (2)
C2—C3—C4119.7 (2)C15—C16—H16120.7
C2—C3—H3120.1C11—C16—H16120.7
C4—C3—H3120.1C14—C17—H17A109.5
C3—C4—C4A122.00 (18)C14—C17—H17B109.5
C3—C4—O6117.29 (17)H17A—C17—H17B109.5
C4A—C4—O6120.54 (17)C14—C17—H17C109.5
C4—C4A—C9A118.59 (17)H17A—C17—H17C109.5
C4—C4A—C10121.41 (17)H17B—C17—H17C109.5
C9A—C4A—C10119.96 (17)C19—C18—C23120.68 (19)
C6—C5—C5A119.9 (2)C19—C18—S1119.46 (16)
C6—C5—H5120.0C23—C18—S1119.85 (16)
C5A—C5—H5120.0C20—C19—C18119.4 (2)
C8A—C5A—C5120.04 (19)C20—C19—H19120.3
C8A—C5A—C10121.30 (18)C18—C19—H19120.3
C5—C5A—C10118.63 (19)C21—C20—C19121.2 (2)
C5—C6—C7120.3 (2)C21—C20—H20119.4
C5—C6—H6119.8C19—C20—H20119.4
C7—C6—H6119.8C20—C21—C22118.0 (2)
C6—C7—C8120.4 (2)C20—C21—C24120.9 (2)
C6—C7—H7119.8C22—C21—C24121.1 (2)
C8—C7—H7119.8C23—C22—C21122.2 (2)
C7—C8—C8A119.9 (2)C23—C22—H22118.9
C7—C8—H8120.0C21—C22—H22118.9
C8A—C8—H8120.0C22—C23—C18118.4 (2)
C5A—C8A—C8119.3 (2)C22—C23—H23120.8
C5A—C8A—C9121.30 (18)C18—C23—H23120.8
C8—C8A—C9119.3 (2)C21—C24—H24A109.5
O1—C9—C8A120.74 (19)C21—C24—H24B109.5
O1—C9—C9A122.00 (19)H24A—C24—H24B109.5
C8A—C9—C9A117.25 (17)C21—C24—H24C109.5
C1—C9A—C4A117.97 (17)H24A—C24—H24C109.5
C1—C9A—C9121.38 (17)H24B—C24—H24C109.5
C4A—C9A—C9120.65 (17)C1—O3—S2116.74 (12)
O2—C10—C5A119.98 (18)C4—O6—S1116.91 (11)
O2—C10—C4A122.49 (18)O7—S1—O8118.31 (12)
C5A—C10—C4A117.53 (17)O7—S1—O6107.69 (9)
C12—C11—C16121.1 (2)O8—S1—O6108.43 (9)
C12—C11—S2119.64 (17)O7—S1—C18111.86 (11)
C16—C11—S2119.27 (17)O8—S1—C18109.96 (10)
C13—C12—C11118.8 (2)O6—S1—C1898.69 (8)
C13—C12—H12120.6O5—S2—O4119.21 (12)
C11—C12—H12120.6O5—S2—O3107.16 (10)
C12—C13—C14121.7 (2)O4—S2—O3107.48 (10)
C12—C13—H13119.2O5—S2—C11110.58 (10)
C14—C13—H13119.2O4—S2—C11111.42 (11)
C13—C14—C15117.8 (2)O3—S2—C1198.85 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.932.483.333 (3)153
C3—H3···O8ii0.932.493.245 (3)139
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC28H20O8S2
Mr548.56
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.6796 (2), 10.9426 (3), 13.1833 (4)
α, β, γ (°)111.122 (1), 90.961 (1), 107.190 (1)
V3)1232.41 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.35 × 0.20 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.912, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
12983, 5616, 3997
Rint0.031
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.127, 1.02
No. of reflections5616
No. of parameters343
No. of restraints346
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.30

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O4i0.932.483.333 (3)153.0
C3—H3···O8ii0.932.493.245 (3)139.0
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.
 

Acknowledgements

We thank the Organizing Commitee for a bursary to attend the XXII IUCr 2011 Congress, the American Crystallographic Association (ACA) for a scholarship to attend the 2009 ACA Summer Course in Small Mol­ecule Crystallography, the 90th Anniversary of Chulalongkorn University Fund (Ratchada­phisek Somphot Endowment Fund), the Thai Government Stimulus Package 2 (TKK2555) project, the Center for Petroleum Petrochemicals and Advanced Materials, and the Research Centre for Bioorganic Chemistry (RCBC), Chulalongkorn University, for financial support.

References

First citationBruker, (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, L.-P., Wang, Y.-Z., Gao, M. & Zhou, B.-H. (2007). Acta Cryst. E63, o1876–o1877.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationCarland, M., Grannas, M. J., Cairns, M. J., Roknic, V. J., Denny, W. A., McFadyen, W. D. & Murray, V. (2010). J. Inorg. Biochem. 104, 815–819.  Web of Science CrossRef CAS PubMed Google Scholar
First citationCho, E. J., Yeo, H. M., Ryu, B. J., Jeong, H. A. & Nam, K. C. (2006). Bull. Korean Chem. Soc. 27, 1967–1968.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGarcía-Sosa, K., Villarreal-Alvarez, N., Lübben, P. & Peña-Rodríguez, L. M. (2006). J. Mex. Chem. Soc. 50, 76–78.  Google Scholar
First citationHuang, S. H., Chiu, H. F., Lee, A. L., Guo, C. L. & Yuan, C. L. (2004). Bioorg. Med. Chem. 12, 6163–6170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMeng, Q., Zhang, W., Yu, J. & Huang, D. (2005). Dyes Pigm. 65, 281–283.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwaminathan, S. & Nigam, G. D. (1967). Curr. Sci. 36, 541.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYatsenko, A. V., Chernyshev, V. V., Popov, S. I., Sonneveld, E. J. & Schenk, H. (2000). Dyes Pigm. 45, 169–176.  Web of Science CSD CrossRef CAS Google Scholar
First citationZielske, A. G. (1987). J. Org. Chem. 52, 1305–1309.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1423-o1424
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds