organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1375

tert-Butyl 6-amino-5-cyano-2-(2-meth­­oxy­eth­yl)nicotinate

aLaboratory of Pharmaceutical Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China, bFochon Pharma Inc., 1933 Davis Street, Suite 207, San Leandro, CA 94577, USA, and cChongqing Pharmaceutical Research Institute Co. Ltd, Chongqing 400016, People's Republic of China
*Correspondence e-mail: sntmilk@yahoo.com.cn

(Received 21 March 2012; accepted 2 April 2012; online 13 April 2012)

The title compound, C14H19N3O3, was synthesized by the reaction of 3-meth­oxy­propionitrile, tert-butyl bromo­acetate and eth­oxy­methyl­enemalononitrile. In the crystal, N—H⋯O hydrogen bonds link the mol­ecules into chains propagating along the b axis.

Related literature

For a related structure, see: Wang et al. (2007[Wang, Q., Zhou, D., Li, C., Shao, Q. & Tu, S. (2007). Acta Cryst. E63, o4220.]). For applications of pyridines, see: Spurr (1995[Spurr, P. R. (1995). Tetrahedron Lett. 36, 2745-2748.]). For background to the synthesis of highly substituted pyridines, see: Chun et al. (2009[Chun, Y. S., Ryu, K. Y., Ko, Y. O., Hong, J. Y., Hong, J., Shin, H. & Lee, S. G. (2009). J. Org. Chem. 74, 7556-7558.], 2011[Chun, Y. S., Lee, J. H., Kim, J. H., Ko, Y. O. & Lee, S. G. (2011). Org. Lett. 13, 6390-6393.]).

[Scheme 1]

Experimental

Crystal data
  • C14H19N3O3

  • Mr = 277.32

  • Monoclinic, C 2/c

  • a = 10.1155 (4) Å

  • b = 15.2482 (5) Å

  • c = 19.4882 (6) Å

  • β = 99.853 (3)°

  • V = 2961.59 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 130 K

  • 0.35 × 0.30 × 0.30 mm

Data collection
  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.902, Tmax = 1.000

  • 5419 measured reflections

  • 2608 independent reflections

  • 2094 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.100

  • S = 1.05

  • 2608 reflections

  • 191 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.88 (1) 2.25 (1) 3.0186 (18) 146 (2)
N2—H2B⋯O1i 0.88 (1) 2.00 (1) 2.8427 (18) 159 (2)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2010[Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Pyridines can be found in many natural products and biologically active compounds (Spurr, 1995). Thus, the synthesis of highly substituted pyridines has attracted much attention (Chun et al. 2009, 2011). We synthesized the title compound (I). Herein we present its crystal structure.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable with those observed in the related compound methyl 6-amino-5-cyano-4-(4-fluorophenyl)-2-methylpyridine-3-carboxylate (Wang et al., 2007).

In the crystal structure of (I), intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains propagated along the b axis.

Related literature top

For a related structure, see: Wang et al. (2007). For applications of pyridines, see: Spurr (1995). For background to the synthesis of highly substituted pyridines, see: Chun et al. (2009, 2011).

Experimental top

A mixture of zinc powder (0.65 g) and 3-methoxypropionitrile (0.85 g) in tetrahydrofuran (10 ml) was refluxed, then tert-Butyl bromoacetate (1.95 g) was added dropwise. Keep stirring under reflux for 1 h. Ethoxymethylenemalononitrile (1.22 g) was added, the reaction mixture was stirred under reflux for 2 h to afford the title compound (I) (Chun et al. 2009, 2011). Single crystals were grown by slow evaporation of a solution of Pet: EtOAc=5:1 at room temperature.

Refinement top

C-bound H atoms were positioned geometrically (C—H 0.95–0.99 Å), and were refined using a riding model, with Uiso(H) = 1.2–1.5 Ueq (C). N-bound H atoms were located in a difference map and refined freely with Uiso(H) = 1.2 Ueq(N).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO (Agilent, 2010); data reduction: CrysAlis PRO (Agilent, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
tert-Butyl 6-amino-5-cyano-2-(2-methoxyethyl)nicotinate top
Crystal data top
C14H19N3O3Dx = 1.244 Mg m3
Mr = 277.32Melting point: 404.16 K
Monoclinic, C2/cMo Kα radiation, λ = 0.7107 Å
a = 10.1155 (4) ÅCell parameters from 2258 reflections
b = 15.2482 (5) Åθ = 2.9–29.1°
c = 19.4882 (6) ŵ = 0.09 mm1
β = 99.853 (3)°T = 130 K
V = 2961.59 (18) Å3Block, colourless
Z = 80.35 × 0.30 × 0.30 mm
F(000) = 1184
Data collection top
Agilent Xcalibur Eos
diffractometer
2608 independent reflections
Radiation source: Enhance (Mo) X-ray Source2094 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 16.0874 pixels mm-1θmax = 25.0°, θmin = 2.9°
ω scansh = 1211
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
k = 1810
Tmin = 0.902, Tmax = 1.000l = 1523
5419 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0438P)2 + 1.1844P]
where P = (Fo2 + 2Fc2)/3
2608 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.16 e Å3
4 restraintsΔρmin = 0.22 e Å3
Crystal data top
C14H19N3O3V = 2961.59 (18) Å3
Mr = 277.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 10.1155 (4) ŵ = 0.09 mm1
b = 15.2482 (5) ÅT = 130 K
c = 19.4882 (6) Å0.35 × 0.30 × 0.30 mm
β = 99.853 (3)°
Data collection top
Agilent Xcalibur Eos
diffractometer
2608 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2010)
2094 reflections with I > 2σ(I)
Tmin = 0.902, Tmax = 1.000Rint = 0.020
5419 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0404 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.16 e Å3
2608 reflectionsΔρmin = 0.22 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21160 (13)0.04640 (8)0.29380 (6)0.0402 (3)
O20.12016 (10)0.02438 (7)0.38946 (5)0.0280 (3)
O30.33430 (10)0.04292 (7)0.12374 (6)0.0296 (3)
N10.17189 (12)0.23015 (8)0.25819 (6)0.0241 (3)
N20.16078 (15)0.36625 (9)0.30598 (8)0.0322 (4)
H2A0.1613 (17)0.4024 (9)0.3412 (8)0.039*
H2B0.1820 (17)0.3884 (10)0.2674 (7)0.039*
N30.11844 (14)0.34153 (10)0.48130 (7)0.0367 (4)
C10.15937 (14)0.27913 (10)0.31410 (8)0.0237 (4)
C20.14474 (14)0.24020 (10)0.37841 (8)0.0233 (4)
C30.14728 (14)0.15014 (10)0.38336 (8)0.0230 (4)
H30.13860.12270.42610.028*
C40.16250 (13)0.09908 (10)0.32599 (8)0.0218 (3)
C50.17249 (13)0.14259 (10)0.26322 (8)0.0219 (3)
C60.16804 (14)0.00242 (11)0.33331 (8)0.0250 (4)
C70.13015 (15)0.29497 (11)0.43634 (8)0.0263 (4)
C80.11812 (17)0.11866 (10)0.40839 (9)0.0303 (4)
C90.0559 (2)0.11529 (13)0.47372 (11)0.0529 (6)
H9A0.04800.17490.49130.079*
H9B0.11280.08020.50920.079*
H9C0.03340.08860.46290.079*
C100.25917 (19)0.15437 (14)0.42359 (11)0.0505 (5)
H10A0.29740.15500.38060.076*
H10B0.31430.11710.45830.076*
H10C0.25750.21420.44170.076*
C110.03036 (19)0.16861 (12)0.35095 (10)0.0459 (5)
H11A0.07730.17510.31120.069*
H11B0.01040.22680.36800.069*
H11C0.05360.13640.33630.069*
C120.18509 (14)0.09710 (11)0.19592 (8)0.0247 (4)
H12A0.14260.03850.19500.030*
H12B0.13670.13150.15630.030*
C130.33020 (14)0.08676 (11)0.18746 (8)0.0252 (4)
H13A0.37960.05240.22680.030*
H13B0.37320.14510.18730.030*
C140.46425 (17)0.04423 (13)0.10532 (10)0.0417 (5)
H14A0.46210.01330.06110.063*
H14B0.49230.10510.10040.063*
H14C0.52800.01520.14180.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0612 (8)0.0263 (7)0.0407 (7)0.0069 (6)0.0305 (6)0.0014 (6)
O20.0394 (6)0.0213 (6)0.0262 (6)0.0012 (5)0.0138 (5)0.0030 (5)
O30.0326 (6)0.0331 (7)0.0258 (6)0.0025 (5)0.0128 (4)0.0028 (5)
N10.0260 (7)0.0240 (7)0.0236 (7)0.0005 (6)0.0082 (5)0.0018 (6)
N20.0477 (9)0.0228 (8)0.0300 (8)0.0015 (7)0.0177 (7)0.0008 (7)
N30.0444 (9)0.0367 (9)0.0296 (8)0.0065 (7)0.0077 (6)0.0051 (7)
C10.0204 (8)0.0241 (8)0.0274 (8)0.0001 (6)0.0065 (6)0.0001 (7)
C20.0225 (8)0.0249 (8)0.0235 (8)0.0001 (6)0.0066 (6)0.0007 (7)
C30.0207 (8)0.0274 (8)0.0216 (8)0.0005 (6)0.0060 (6)0.0013 (7)
C40.0185 (7)0.0245 (8)0.0231 (8)0.0004 (6)0.0059 (6)0.0003 (7)
C50.0164 (7)0.0253 (8)0.0249 (8)0.0001 (6)0.0062 (6)0.0010 (7)
C60.0241 (8)0.0274 (9)0.0248 (8)0.0003 (7)0.0078 (6)0.0009 (7)
C70.0282 (9)0.0258 (9)0.0259 (9)0.0014 (7)0.0071 (7)0.0029 (8)
C80.0399 (9)0.0211 (8)0.0324 (9)0.0023 (7)0.0132 (7)0.0071 (8)
C90.0851 (15)0.0328 (11)0.0507 (13)0.0069 (10)0.0392 (11)0.0133 (10)
C100.0487 (12)0.0491 (12)0.0533 (13)0.0149 (10)0.0076 (9)0.0227 (11)
C110.0542 (12)0.0304 (10)0.0526 (12)0.0095 (9)0.0080 (9)0.0036 (10)
C120.0259 (8)0.0268 (9)0.0219 (8)0.0008 (7)0.0052 (6)0.0002 (7)
C130.0304 (9)0.0246 (8)0.0223 (8)0.0020 (7)0.0094 (6)0.0022 (7)
C140.0431 (11)0.0426 (11)0.0470 (11)0.0023 (9)0.0290 (8)0.0050 (10)
Geometric parameters (Å, º) top
O1—C61.2072 (18)C8—C101.508 (2)
O2—C61.3342 (17)C8—C111.510 (2)
O2—C81.4852 (19)C9—H9A0.9800
O3—C131.4170 (18)C9—H9B0.9800
O3—C141.4209 (18)C9—H9C0.9800
N1—C11.3447 (19)C10—H10A0.9800
N1—C51.339 (2)C10—H10B0.9800
N2—H2A0.880 (12)C10—H10C0.9800
N2—H2B0.883 (12)C11—H11A0.9800
N2—C11.338 (2)C11—H11B0.9800
N3—C71.149 (2)C11—H11C0.9800
C1—C21.417 (2)C12—H12A0.9900
C2—C31.377 (2)C12—H12B0.9900
C2—C71.432 (2)C12—C131.513 (2)
C3—H30.9500C13—H13A0.9900
C3—C41.392 (2)C13—H13B0.9900
C4—C51.410 (2)C14—H14A0.9800
C4—C61.481 (2)C14—H14B0.9800
C5—C121.508 (2)C14—H14C0.9800
C8—C91.515 (2)
C6—O2—C8121.51 (12)H9A—C9—H9B109.5
C13—O3—C14112.44 (12)H9A—C9—H9C109.5
C5—N1—C1119.64 (13)H9B—C9—H9C109.5
H2A—N2—H2B117.1 (16)C8—C10—H10A109.5
C1—N2—H2A121.9 (11)C8—C10—H10B109.5
C1—N2—H2B119.3 (11)C8—C10—H10C109.5
N1—C1—C2121.50 (14)H10A—C10—H10B109.5
N2—C1—N1116.81 (14)H10A—C10—H10C109.5
N2—C1—C2121.69 (15)H10B—C10—H10C109.5
C1—C2—C7119.56 (14)C8—C11—H11A109.5
C3—C2—C1118.44 (14)C8—C11—H11B109.5
C3—C2—C7121.99 (14)C8—C11—H11C109.5
C2—C3—H3119.8H11A—C11—H11B109.5
C2—C3—C4120.32 (14)H11A—C11—H11C109.5
C4—C3—H3119.8H11B—C11—H11C109.5
C3—C4—C5117.88 (14)C5—C12—H12A109.3
C3—C4—C6119.12 (13)C5—C12—H12B109.3
C5—C4—C6123.00 (14)C5—C12—C13111.75 (12)
N1—C5—C4122.18 (14)H12A—C12—H12B107.9
N1—C5—C12113.27 (13)C13—C12—H12A109.3
C4—C5—C12124.55 (14)C13—C12—H12B109.3
O1—C6—O2123.89 (15)O3—C13—C12108.60 (12)
O1—C6—C4124.35 (14)O3—C13—H13A110.0
O2—C6—C4111.76 (13)O3—C13—H13B110.0
N3—C7—C2177.52 (17)C12—C13—H13A110.0
O2—C8—C9101.62 (13)C12—C13—H13B110.0
O2—C8—C10110.20 (14)H13A—C13—H13B108.4
O2—C8—C11109.60 (13)O3—C14—H14A109.5
C10—C8—C9111.25 (16)O3—C14—H14B109.5
C10—C8—C11112.31 (16)O3—C14—H14C109.5
C11—C8—C9111.34 (16)H14A—C14—H14B109.5
C8—C9—H9A109.5H14A—C14—H14C109.5
C8—C9—H9B109.5H14B—C14—H14C109.5
C8—C9—H9C109.5
N1—C1—C2—C31.8 (2)C4—C5—C12—C1393.76 (17)
N1—C1—C2—C7179.27 (13)C5—N1—C1—N2179.37 (13)
N1—C5—C12—C1386.09 (16)C5—N1—C1—C20.9 (2)
N2—C1—C2—C3178.53 (14)C5—C4—C6—O118.0 (2)
N2—C1—C2—C70.4 (2)C5—C4—C6—O2162.63 (13)
C1—N1—C5—C41.0 (2)C5—C12—C13—O3179.41 (12)
C1—N1—C5—C12179.11 (12)C6—O2—C8—C9179.74 (14)
C1—C2—C3—C40.7 (2)C6—O2—C8—C1062.23 (19)
C1—C2—C7—N33 (4)C6—O2—C8—C1161.86 (18)
C2—C3—C4—C51.2 (2)C6—C4—C5—N1177.67 (13)
C2—C3—C4—C6178.59 (13)C6—C4—C5—C122.2 (2)
C3—C2—C7—N3178 (100)C7—C2—C3—C4179.59 (13)
C3—C4—C5—N12.1 (2)C8—O2—C6—O10.6 (2)
C3—C4—C5—C12178.08 (12)C8—O2—C6—C4178.73 (12)
C3—C4—C6—O1161.74 (15)C14—O3—C13—C12169.39 (13)
C3—C4—C6—O217.62 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.88 (1)2.25 (1)3.0186 (18)146 (2)
N2—H2B···O1i0.88 (1)2.00 (1)2.8427 (18)159 (2)
Symmetry code: (i) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC14H19N3O3
Mr277.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)130
a, b, c (Å)10.1155 (4), 15.2482 (5), 19.4882 (6)
β (°) 99.853 (3)
V3)2961.59 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.35 × 0.30 × 0.30
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2010)
Tmin, Tmax0.902, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5419, 2608, 2094
Rint0.020
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.100, 1.05
No. of reflections2608
No. of parameters191
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.22

Computer programs: CrysAlis PRO (Agilent, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O3i0.880 (12)2.247 (13)3.0186 (18)146.3 (15)
N2—H2B···O1i0.883 (12)2.003 (13)2.8427 (18)158.5 (16)
Symmetry code: (i) x+1/2, y1/2, z+1/2.
 

Acknowledgements

The authors thank Yin Ping, Fang Bo and Fochon Pharma, Inc.

References

First citationAgilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationChun, Y. S., Lee, J. H., Kim, J. H., Ko, Y. O. & Lee, S. G. (2011). Org. Lett. 13, 6390–6393.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationChun, Y. S., Ryu, K. Y., Ko, Y. O., Hong, J. Y., Hong, J., Shin, H. & Lee, S. G. (2009). J. Org. Chem. 74, 7556–7558.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpurr, P. R. (1995). Tetrahedron Lett. 36, 2745–2748.  CrossRef CAS Web of Science Google Scholar
First citationWang, Q., Zhou, D., Li, C., Shao, Q. & Tu, S. (2007). Acta Cryst. E63, o4220.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1375
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds