metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Carbonyl­chloridobis[diphen­yl(4-vinyl­phen­yl)phosphane-κP]rhodium(I)

aResearch Centre for Synthesis and Catalysis, Department of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg 2006, South Africa
*Correspondence e-mail: rmeijboom@uj.ac.za

(Received 22 March 2012; accepted 29 March 2012; online 4 April 2012)

In the title compound, trans-[RhCl(C20H17P)2(CO)], the RhI atom is situated on a center of symmetry, resulting in a statistical 1:1 disorder of the chloride [Rh—Cl = 2.383 (2) Å] and carbonyl [Rh—C = 1.752 (7) Å] ligands. The distorted trans square-planar environment is completed by two P atoms [Rh—P = 2.3251 (4) Å] from two diphen­yl(4-vinyl­phen­yl)phosphane ligands. The vinyl group is disordered over two sets of sites in a 0.668 (10):0.332 (10) ratio. The crystal packing exhibits weak C—H⋯Cl and C—H⋯O hydrogen bonds and ππ inter­actions between the phenyl rings of neighbouring mol­ecules, with a centroid–centroid distance of 3.682 (2) Å.

Related literature

For a review of rhodium Vaska {trans-[RhCl(CO)(PR3)2]} compounds, see: Roodt et al. (2003[Roodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121-137.]). For related compounds, see: Angoletta (1959[Angoletta, M. (1959). Gazz. Chim. Ital. 89, 2359-2361.]); Vaska & Di Luzio (1961[Vaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc. 83, 2784-2785.]); Chen et al. (1991[Chen, Y.-J., Wang, J.-C. & Wang, Y. (1991). Acta Cryst. C47, 2441-2442.]); Kuwabara & Bau (1994[Kuwabara, E. & Bau, R. (1994). Acta Cryst. C50, 1409-1411.]); Otto et al. (2000[Otto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295-299.]); Otto (2001[Otto, S. (2001). Acta Cryst. C57, 793-795.]); Meijboom et al. (2005[Meijboom, R., Muller, A. & Roodt, A. (2005). Acta Cryst. E61, m1283-m1285.]).

[Scheme 1]

Experimental

Crystal data
  • [RhCl(C20H17P)2(CO)]

  • Mr = 742.98

  • Triclinic, [P \overline 1]

  • a = 9.9030 (4) Å

  • b = 9.9310 (4) Å

  • c = 10.4150 (4) Å

  • α = 85.727 (2)°

  • β = 68.475 (2)°

  • γ = 62.295 (2)°

  • V = 837.85 (6) Å3

  • Z = 1

  • Cu Kα radiation

  • μ = 6.01 mm−1

  • T = 100 K

  • 0.10 × 0.08 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.107, Tmax = 0.402

  • 11163 measured reflections

  • 2941 independent reflections

  • 2850 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.057

  • S = 1.04

  • 2941 reflections

  • 232 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9B—H9B1⋯O01i 0.93 2.54 3.205 (11) 129
C14—H14⋯Cl1ii 0.93 2.79 3.660 (3) 157
Symmetry codes: (i) -x+2, -y, -z; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The original Vaska complex, trans-[IrCl(CO)(PPh3)2], was first reported in 1959 (Angoletta, 1959), but later correctly formulated by Vaska in 1961 (Vaska & Di Luzio, 1961) . This class of symmetrical square-planar complexes often crystallizes with the metal atom on a crystallographic inversion centre of symmetry, thus imposing a disordered packing arrangement (Otto, 2001;Otto et al., 2000; Chen et al.,1991; Kuwabara & Bau, 1994).These Vaska type complexes are useful model complexes and provide several probing methods, e.g. NMR and IR, to investigate the steric and electronic effects of novel group 15 ligands (Roodt et al., 2003).

Here we report the title compound, the i>trans-[RhClL2(CO)](L = diphenyl(4-vinylphenyl)phosphane) complex crystallizes in the triclinic space group, P-1.The crystal structure of the title compound (Fig.1) shows the expected square planar geometry with the phosphane ligands trans to each other. The RhI atom is situated on a center of symmetry, resulting in a statistical 1:1 disorder of the chlorido [Rh—Cl 2.383 (2) Å] and carbonyl [Rh—C 1.752 (7) Å] ligands. The distorted trans square-planar environment is completed by two P atoms [Rh—P 2.3251 (4) Å] from two L ligands. The vinyl group is disordered over two sets of sites in a 0.668 (10):0.332 (10) ratio. The J coupling of (Rh-P) is 128 Hz which is in agreement with the coupling constants for other rhodium Vaska type complexes of this nature (Meijboom et al., 2005). The C01–Rh1–P2 angle of 92.99 (17) ° and the P2–Rh1–Cl1 of 94.46 (3) ° exemplifies the deviation from the ideal 90 ° square planar geometry.

The crystal packing exhibits weak intermolecular C—H···Cl and C—H···O hydrogen bonds (Table 1). There is a ππ interaction between the neighbouring phenyl ring centroids of C16-C21 and C16-C21 (2-x,1-y,1-z), respectively with the centroid-centroid distance of 3.682 (2) Å.

Related literature top

For a review of rhodium Vaska {trans-[RhCl(CO)(PR3)2]} compounds, see: Roodt et al. (2003). For related compounds, see: Angoletta (1959); Vaska & Di Luzio (1961); Chen et al. (1991); Kuwabara & Bau (1994); Otto et al. (2000); Otto (2001); Meijboom et al. (2005).

Experimental top

Diphenylphosphinostyrene (0.15 g, 0.51 mmol) was dissolved in acetone (6 cm3). A solution of dichlorotetracarbonyldirhodium(I) (0.04 g, 0.13 mmol) in acetone was added to the phosphine solution. The mixture was stirred for 5 minutes, slow evaporation of the solvent afforded the title compound as a yellow crystalline solid. Spectroscopic analysis:31P{H} NMR (CDCl3, 161.99 MHz, p.p.m.): 46.42 [d, 1J(Rh—P) = 179.81 Hz]; IR ν(CO): 1957.96 cm-1; (CD2Cl2) ν(CO): 1977.04 cm-1.

Refinement top

The H atoms were placed in geometrically idealized positions (C—H bonds of 0.95–0.98 /%A) and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids [symmetry code: (i) (1 - x, 1 - y, 1 - z)].
trans-Carbonylchloridobis[diphenyl(4-vinylphenyl)phosphane- κP]rhodium(I) top
Crystal data top
[RhCl(C20H17P)2(CO)]Z = 1
Mr = 742.98F(000) = 380
Triclinic, P1Dx = 1.473 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54178 Å
a = 9.9030 (4) ÅCell parameters from 8410 reflections
b = 9.9310 (4) Åθ = 4.6–66.3°
c = 10.4150 (4) ŵ = 6.01 mm1
α = 85.727 (2)°T = 100 K
β = 68.475 (2)°Rectangular, yellow
γ = 62.295 (2)°0.10 × 0.08 × 0.06 mm
V = 837.85 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2941 independent reflections
Radiation source: fine-focus sealed tube2850 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ϕ and ω scansθmax = 66.3°, θmin = 4.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 117
Tmin = 0.107, Tmax = 0.402k = 1111
11163 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.5512P]
where P = (Fo2 + 2Fc2)/3
2941 reflections(Δ/σ)max = 0.001
232 parametersΔρmax = 0.46 e Å3
6 restraintsΔρmin = 0.27 e Å3
Crystal data top
[RhCl(C20H17P)2(CO)]γ = 62.295 (2)°
Mr = 742.98V = 837.85 (6) Å3
Triclinic, P1Z = 1
a = 9.9030 (4) ÅCu Kα radiation
b = 9.9310 (4) ŵ = 6.01 mm1
c = 10.4150 (4) ÅT = 100 K
α = 85.727 (2)°0.10 × 0.08 × 0.06 mm
β = 68.475 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2941 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2850 reflections with I > 2σ(I)
Tmin = 0.107, Tmax = 0.402Rint = 0.026
11163 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0246 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.04Δρmax = 0.46 e Å3
2941 reflectionsΔρmin = 0.27 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Rh10.50.50.50.02293 (9)
Cl10.34866 (19)0.7717 (2)0.55041 (12)0.0329 (3)0.5
C010.6149 (7)0.2999 (8)0.4747 (5)0.0330 (14)*0.5
O010.6932 (5)0.1680 (6)0.4511 (4)0.0393 (13)*0.5
P20.71286 (5)0.50159 (5)0.30681 (4)0.02055 (12)
C20.7589 (2)0.3785 (2)0.15917 (19)0.0239 (4)
C30.9177 (3)0.2746 (2)0.0745 (2)0.0305 (4)
H31.00630.26290.09490.037*
C40.9461 (3)0.1880 (3)0.0400 (2)0.0412 (5)
H41.05360.11790.09420.049*
C50.8188 (4)0.2033 (3)0.0755 (2)0.0431 (6)
C60.6589 (3)0.3064 (3)0.0108 (3)0.0421 (6)
H60.57080.31830.01030.05*
C70.6284 (3)0.3916 (2)0.1273 (2)0.0331 (4)
H70.52060.45780.18430.04*
C100.6760 (2)0.6851 (2)0.23862 (19)0.0224 (4)
C110.6826 (2)0.7072 (2)0.1032 (2)0.0253 (4)
H110.70810.62630.04360.03*
C120.6512 (3)0.8499 (2)0.0569 (2)0.0327 (4)
H120.65550.86420.03350.039*
C130.6137 (3)0.9700 (2)0.1445 (3)0.0379 (5)
H130.5911.06570.11370.045*
C140.6097 (3)0.9485 (2)0.2788 (2)0.0346 (5)
H140.58641.02920.33740.042*
C150.6406 (2)0.8070 (2)0.3253 (2)0.0277 (4)
H150.63770.7930.41530.033*
C160.9104 (2)0.4379 (2)0.32389 (18)0.0226 (4)
C170.9552 (3)0.3347 (2)0.4169 (2)0.0297 (4)
H170.88350.2990.47210.036*
C181.1066 (3)0.2846 (2)0.4277 (2)0.0335 (4)
H181.13690.21390.48880.04*
C191.2126 (2)0.3398 (2)0.3477 (2)0.0316 (4)
H191.31370.30650.35530.038*
C201.1679 (2)0.4442 (3)0.2569 (2)0.0314 (4)
H201.23840.48220.20420.038*
C211.0179 (2)0.4927 (2)0.2438 (2)0.0274 (4)
H210.98910.5620.18140.033*
C8A0.8768 (8)0.0979 (6)0.2041 (5)0.0314 (11)0.668 (10)
H8A0.98650.02310.24090.038*0.668 (10)
C9A0.7794 (5)0.1079 (5)0.2647 (4)0.0441 (14)0.668 (10)
H9A10.66930.18190.22950.053*0.668 (10)
H9A20.81980.0410.34330.053*0.668 (10)
C9B0.9234 (11)0.0621 (10)0.2909 (12)0.043 (3)0.332 (10)
H9B11.02590.02950.28620.051*0.332 (10)
H9B20.9160.02720.36720.051*0.332 (10)
C8B0.7895 (13)0.1573 (11)0.1898 (8)0.028 (2)0.332 (10)
H8B0.68470.19280.19030.034*0.332 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01987 (12)0.02210 (12)0.02175 (12)0.01035 (8)0.00276 (8)0.00663 (7)
Cl10.0272 (6)0.0269 (8)0.0345 (6)0.0141 (6)0.0001 (4)0.0063 (6)
P20.0190 (2)0.0228 (2)0.0180 (2)0.01070 (18)0.00469 (17)0.00582 (17)
C20.0292 (9)0.0246 (9)0.0233 (9)0.0173 (8)0.0107 (8)0.0098 (7)
C30.0334 (10)0.0332 (11)0.0265 (10)0.0203 (9)0.0065 (8)0.0024 (8)
C40.0518 (14)0.0439 (13)0.0288 (11)0.0326 (11)0.0013 (10)0.0035 (9)
C50.0767 (17)0.0471 (13)0.0270 (11)0.0487 (13)0.0171 (11)0.0118 (10)
C60.0690 (16)0.0469 (13)0.0488 (13)0.0451 (13)0.0427 (13)0.0280 (11)
C70.0363 (11)0.0316 (11)0.0426 (12)0.0208 (9)0.0216 (9)0.0135 (9)
C100.0172 (8)0.0230 (9)0.0246 (9)0.0103 (7)0.0051 (7)0.0061 (7)
C110.0225 (9)0.0273 (9)0.0248 (9)0.0127 (7)0.0069 (7)0.0052 (7)
C120.0315 (10)0.0335 (11)0.0308 (10)0.0154 (9)0.0114 (8)0.0146 (8)
C130.0359 (11)0.0251 (10)0.0481 (13)0.0151 (9)0.0119 (10)0.0133 (9)
C140.0317 (10)0.0264 (10)0.0405 (12)0.0146 (8)0.0061 (9)0.0009 (8)
C150.0247 (9)0.0302 (10)0.0249 (9)0.0135 (8)0.0050 (7)0.0028 (8)
C160.0229 (9)0.0241 (9)0.0182 (8)0.0094 (7)0.0067 (7)0.0001 (7)
C170.0337 (10)0.0297 (10)0.0298 (10)0.0168 (8)0.0144 (8)0.0077 (8)
C180.0373 (11)0.0304 (10)0.0371 (11)0.0133 (9)0.0230 (9)0.0086 (9)
C190.0273 (10)0.0353 (11)0.0315 (10)0.0109 (8)0.0142 (8)0.0023 (8)
C200.0274 (10)0.0418 (12)0.0266 (10)0.0184 (9)0.0088 (8)0.0028 (8)
C210.0271 (9)0.0344 (10)0.0213 (9)0.0149 (8)0.0096 (8)0.0056 (8)
C8A0.032 (2)0.030 (2)0.029 (3)0.0122 (19)0.010 (2)0.0010 (17)
C9A0.044 (2)0.045 (2)0.038 (2)0.0152 (17)0.0148 (16)0.0073 (17)
C9B0.046 (6)0.048 (5)0.033 (6)0.018 (4)0.016 (4)0.004 (4)
C8B0.023 (4)0.029 (4)0.031 (4)0.010 (4)0.011 (3)0.002 (3)
Geometric parameters (Å, º) top
Rh1—C01i1.752 (7)C12—C131.377 (3)
Rh1—C011.752 (7)C12—H120.93
Rh1—P22.3251 (4)C13—C141.388 (3)
Rh1—P2i2.3251 (4)C13—H130.93
Rh1—Cl1i2.383 (2)C14—C151.383 (3)
Rh1—Cl12.383 (2)C14—H140.93
C01—O011.158 (7)C15—H150.93
P2—C21.8205 (19)C16—C171.389 (3)
P2—C101.8266 (18)C16—C211.395 (3)
P2—C161.8298 (18)C17—C181.389 (3)
C2—C31.388 (3)C17—H170.93
C2—C71.396 (3)C18—C191.387 (3)
C3—C41.387 (3)C18—H180.93
C3—H30.93C19—C201.377 (3)
C4—C51.380 (4)C19—H190.93
C4—H40.93C20—C211.389 (3)
C5—C61.396 (4)C20—H200.93
C5—C8B1.473 (8)C21—H210.93
C5—C8A1.518 (6)C8A—C9A1.299 (8)
C6—C71.387 (3)C8A—H8A0.93
C6—H60.93C9A—H9A10.93
C7—H70.93C9A—H9A20.93
C10—C151.392 (3)C9B—C8B1.311 (15)
C10—C111.393 (3)C9B—H9B10.93
C11—C121.392 (3)C9B—H9B20.93
C11—H110.93C8B—H8B0.93
C01i—Rh1—C01180.0000 (10)C12—C11—C10120.20 (19)
C01i—Rh1—P292.99 (17)C12—C11—H11119.9
C01—Rh1—P287.01 (17)C10—C11—H11119.9
C01i—Rh1—P2i87.01 (17)C13—C12—C11120.2 (2)
C01—Rh1—P2i92.99 (17)C13—C12—H12119.9
P2—Rh1—P2i180.00 (2)C11—C12—H12119.9
C01i—Rh1—Cl1i175.46 (17)C12—C13—C14120.06 (19)
C01—Rh1—Cl1i4.54 (17)C12—C13—H13120
P2—Rh1—Cl1i85.54 (3)C14—C13—H13120
P2i—Rh1—Cl1i94.46 (3)C15—C14—C13119.9 (2)
C01i—Rh1—Cl14.54 (17)C15—C14—H14120.1
C01—Rh1—Cl1175.46 (17)C13—C14—H14120.1
P2—Rh1—Cl194.46 (3)C14—C15—C10120.72 (19)
P2i—Rh1—Cl185.54 (3)C14—C15—H15119.6
Cl1i—Rh1—Cl1180.00 (6)C10—C15—H15119.6
O01—C01—Rh1176.7 (5)C17—C16—C21119.13 (17)
C2—P2—C10103.30 (8)C17—C16—P2120.51 (15)
C2—P2—C16105.19 (8)C21—C16—P2120.36 (14)
C10—P2—C16102.16 (8)C16—C17—C18120.31 (19)
C2—P2—Rh1110.70 (6)C16—C17—H17119.8
C10—P2—Rh1116.84 (6)C18—C17—H17119.8
C16—P2—Rh1117.12 (6)C19—C18—C17120.11 (19)
C3—C2—C7118.24 (19)C19—C18—H18119.9
C3—C2—P2123.22 (15)C17—C18—H18119.9
C7—C2—P2118.52 (16)C20—C19—C18119.90 (18)
C4—C3—C2120.8 (2)C20—C19—H19120
C4—C3—H3119.6C18—C19—H19120
C2—C3—H3119.6C19—C20—C21120.27 (19)
C5—C4—C3121.7 (2)C19—C20—H20119.9
C5—C4—H4119.2C21—C20—H20119.9
C3—C4—H4119.2C20—C21—C16120.26 (18)
C4—C5—C6117.4 (2)C20—C21—H21119.9
C4—C5—C8B140.7 (5)C16—C21—H21119.9
C6—C5—C8B101.4 (5)C9A—C8A—C5122.6 (5)
C4—C5—C8A113.1 (3)C9A—C8A—H8A118.7
C6—C5—C8A129.4 (3)C5—C8A—H8A118.7
C7—C6—C5121.6 (2)C8A—C9A—H9A1120
C7—C6—H6119.2C8A—C9A—H9A2120
C5—C6—H6119.2H9A1—C9A—H9A2120
C6—C7—C2120.3 (2)C8B—C9B—H9B1120
C6—C7—H7119.9C8B—C9B—H9B2120
C2—C7—H7119.9H9B1—C9B—H9B2120
C15—C10—C11118.91 (17)C9B—C8B—C5114.4 (8)
C15—C10—P2118.66 (14)C9B—C8B—H8B122.8
C11—C10—P2122.43 (15)C5—C8B—H8B122.8
C01i—Rh1—P2—C2126.99 (17)Rh1—P2—C10—C1559.78 (15)
C01—Rh1—P2—C253.01 (17)C2—P2—C10—C111.31 (17)
Cl1i—Rh1—P2—C248.71 (7)C16—P2—C10—C11110.36 (15)
Cl1—Rh1—P2—C2131.29 (7)Rh1—P2—C10—C11120.47 (14)
C01i—Rh1—P2—C109.16 (17)C15—C10—C11—C121.2 (3)
C01—Rh1—P2—C10170.84 (17)P2—C10—C11—C12179.06 (15)
Cl1i—Rh1—P2—C10166.53 (7)C10—C11—C12—C130.1 (3)
Cl1—Rh1—P2—C1013.47 (7)C11—C12—C13—C141.0 (3)
C01i—Rh1—P2—C16112.47 (17)C12—C13—C14—C151.1 (3)
C01—Rh1—P2—C1667.53 (17)C13—C14—C15—C100.1 (3)
Cl1i—Rh1—P2—C1671.84 (7)C11—C10—C15—C141.1 (3)
Cl1—Rh1—P2—C16108.16 (7)P2—C10—C15—C14179.15 (15)
C10—P2—C2—C399.98 (17)C2—P2—C16—C1796.18 (16)
C16—P2—C2—C36.79 (18)C10—P2—C16—C17156.22 (16)
Rh1—P2—C2—C3134.20 (15)Rh1—P2—C16—C1727.23 (17)
C10—P2—C2—C778.41 (16)C2—P2—C16—C2183.97 (16)
C16—P2—C2—C7174.82 (15)C10—P2—C16—C2123.63 (17)
Rh1—P2—C2—C747.41 (16)Rh1—P2—C16—C21152.63 (13)
C7—C2—C3—C41.0 (3)C21—C16—C17—C181.3 (3)
P2—C2—C3—C4177.38 (16)P2—C16—C17—C18178.86 (16)
C2—C3—C4—C51.1 (3)C16—C17—C18—C191.3 (3)
C3—C4—C5—C61.9 (3)C17—C18—C19—C200.3 (3)
C3—C4—C5—C8B168.8 (5)C18—C19—C20—C210.9 (3)
C3—C4—C5—C8A180.0 (2)C19—C20—C21—C160.9 (3)
C4—C5—C6—C70.6 (3)C17—C16—C21—C200.2 (3)
C8B—C5—C6—C7173.4 (3)P2—C16—C21—C20179.99 (15)
C8A—C5—C6—C7178.3 (3)C4—C5—C8A—C9A171.1 (3)
C5—C6—C7—C21.5 (3)C6—C5—C8A—C9A11.1 (5)
C3—C2—C7—C62.3 (3)C8B—C5—C8A—C9A5.9 (6)
P2—C2—C7—C6176.19 (15)C4—C5—C8B—C9B6.1 (10)
C2—P2—C10—C15178.44 (14)C6—C5—C8B—C9B177.7 (6)
C16—P2—C10—C1569.39 (16)C8A—C5—C8B—C9B15.6 (5)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9B—H9B1···O01ii0.932.543.205 (11)129
C14—H14···Cl1iii0.932.793.660 (3)157
Symmetry codes: (ii) x+2, y, z; (iii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[RhCl(C20H17P)2(CO)]
Mr742.98
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.9030 (4), 9.9310 (4), 10.4150 (4)
α, β, γ (°)85.727 (2), 68.475 (2), 62.295 (2)
V3)837.85 (6)
Z1
Radiation typeCu Kα
µ (mm1)6.01
Crystal size (mm)0.10 × 0.08 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.107, 0.402
No. of measured, independent and
observed [I > 2σ(I)] reflections
11163, 2941, 2850
Rint0.026
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.057, 1.04
No. of reflections2941
No. of parameters232
No. of restraints6
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9B—H9B1···O01i0.932.543.205 (11)128.6
C14—H14···Cl1ii0.932.793.660 (3)156.6
Symmetry codes: (i) x+2, y, z; (ii) x+1, y+2, z+1.
 

Acknowledgements

Financial assistance from the South African National Research Foundation (SA NRF), the Research Fund of the University of Johannesburg, TESP and SASOL is gratefully acknowledged. Mr S. Enus is acknowledged for the synthesis of this compound.

References

First citationAngoletta, M. (1959). Gazz. Chim. Ital. 89, 2359–2361.  CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2007). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Y.-J., Wang, J.-C. & Wang, Y. (1991). Acta Cryst. C47, 2441–2442.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKuwabara, E. & Bau, R. (1994). Acta Cryst. C50, 1409–1411.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMeijboom, R., Muller, A. & Roodt, A. (2005). Acta Cryst. E61, m1283–m1285.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtto, S. (2001). Acta Cryst. C57, 793–795.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOtto, S., Roodt, A. & Smith, J. (2000). Inorg. Chim. Acta, 303, 295–299.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoodt, A., Otto, S. & Steyl, G. (2003). Coord. Chem. Rev. 245, 121–137.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVaska, L. & Di Luzio, J. W. (1961). J. Am. Chem. Soc. 83, 2784–2785.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds