organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1366
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

A second ortho­rhom­bic polymorph of 2-(pyridin-4-ylmeth­­oxy)phenol

aCollege of Life Science, Sichuan Agriculture University, Ya'an 625014, People's Republic of China, and bEngineering Research Center of Pesticides of Heilongjiang University, Heilongjiang University, Harbin 150050, People's Republic of China
*Correspondence e-mail: hgf1000@163.com

(Received 23 March 2012; accepted 31 March 2012; online 13 April 2012)

The crystal structure of the title compound, C12H11NO2, represents a new ortho­rhom­bic polymorph II of the previously reported ortho­rhom­bic form I [Zhang et al. (2009[Zhang, Z., Li, Y.-J. & Gao, X.-M. (2009). Acta Cryst. E65, o3160.]) Acta Cryst. E65, o3160]. In polymorph II, the six-membered rings form a dihedral angle of 13.8 (1)° [71.6 (1)° in I], and O—H⋯N hydrogen bonds link mol­ecules into chains along [100], whereas the crystal structure of I features hydrogen-bonded centrosymmetric dimers.

Related literature

For details of the synthesis, see: Gao et al. (2004[Gao, C.-M., Cao, D. & Zhu, L. (2004). Photogr. Sci. Photochem. 22, 103-107.]). For the crystal structure of polymorph I, see: Zhang et al. (2009[Zhang, Z., Li, Y.-J. & Gao, X.-M. (2009). Acta Cryst. E65, o3160.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11NO2

  • Mr = 201.22

  • Orthorhombic, P c a 21

  • a = 23.398 (5) Å

  • b = 5.8343 (12) Å

  • c = 7.3934 (15) Å

  • V = 1009.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.50 × 0.37 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.956, Tmax = 0.990

  • 8907 measured reflections

  • 2285 independent reflections

  • 1298 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.077

  • S = 1.01

  • 2285 reflections

  • 138 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1i 0.82 1.95 2.763 (2) 173
Symmetry code: (i) [x+{\script{1\over 2}}, -y, z].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The reported here crystal structure of the title compound, C12H11NO2, represents a new orthorhombic polymorph (II)of the previously reported orthorhombic form (I) (Zhang et al. 2009). It was crystalized from a methanol solution of the title compound and (R)-2-(4-(carboxymethoxy)phenoxy)propanoic acid mixture.

In polymorph II (Figure 1), two six-membered rings form a dihedral angle of 13.8 (1)° [71.6 (1)° in I], and intermolecular O—H···N hydrogen bonds link molecules into chains along [100] (Figure 2, Table 1), in spite of hydrogen-bonded centrosymmetric dimers in polymorph I.

Related literature top

For details of the synthesis, see: Gao et al. (2004). For the crystal structure of polymorph I, see: Zhang et al. (2009).

Experimental top

The 2-(pyridin-4-ylmethoxy)phenol was synthesized by the reaction of o-benzenediol and 4-chloromethylpyridine hydrochloride under nitrogen atmosphere and alkaline condition (Gao et al., 2004). Colourless block crystals were obtained by slow evaporation of a methanol solution (10 mL) containing title compound (0.402 g, 2 mmol) and (R)-2-(4-(carboxymethoxy)phenoxy)propanoic acid (0.48 g, 2 mmol) which only contained the molecules of title compound.

Refinement top

H atoms bound to C atoms and the H atoms of the hydroxyl groups were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene), O—H = 0.82 Å and with Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids at the 50% probability level for non-H atoms.
[Figure 2] Fig. 2. A partial packing view, showing hydrogen-bonded (dashed lines) chain structure along [100].
2-(pyridin-4-ylmethoxy)phenol top
Crystal data top
C12H11NO2F(000) = 424
Mr = 201.22Dx = 1.324 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 5894 reflections
a = 23.398 (5) Åθ = 3.3–27.5°
b = 5.8343 (12) ŵ = 0.09 mm1
c = 7.3934 (15) ÅT = 293 K
V = 1009.3 (4) Å3Block, colourless
Z = 40.50 × 0.37 × 0.11 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2285 independent reflections
Radiation source: fine-focus sealed tube1298 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scanθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 3030
Tmin = 0.956, Tmax = 0.990k = 77
8907 measured reflectionsl = 99
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0218P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
2285 reflectionsΔρmax = 0.15 e Å3
138 parametersΔρmin = 0.14 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0028 (6)
Crystal data top
C12H11NO2V = 1009.3 (4) Å3
Mr = 201.22Z = 4
Orthorhombic, Pca21Mo Kα radiation
a = 23.398 (5) ŵ = 0.09 mm1
b = 5.8343 (12) ÅT = 293 K
c = 7.3934 (15) Å0.50 × 0.37 × 0.11 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2285 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1298 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.990Rint = 0.066
8907 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.077H-atom parameters constrained
S = 1.01Δρmax = 0.15 e Å3
2285 reflectionsΔρmin = 0.14 e Å3
138 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68990 (6)0.4700 (3)0.0425 (3)0.0567 (5)
H10.71090.35780.03810.085*
O20.46554 (6)0.1873 (3)0.0201 (2)0.0566 (5)
N10.26917 (7)0.1195 (3)0.0264 (3)0.0488 (5)
C20.59170 (9)0.5453 (4)0.0842 (3)0.0442 (6)
H20.60140.68650.13390.053*
C80.36646 (8)0.1609 (4)0.0395 (3)0.0390 (5)
C70.41925 (8)0.3104 (4)0.0562 (3)0.0429 (6)
H7A0.41370.45380.00780.052*
H7B0.42690.34440.18240.052*
C120.36737 (9)0.0462 (4)0.0507 (3)0.0448 (6)
H120.40030.09580.10910.054*
C30.53418 (9)0.4830 (4)0.0713 (3)0.0461 (6)
H30.50570.58250.11070.055*
C40.52013 (8)0.2740 (4)0.0000 (3)0.0410 (6)
C10.63411 (8)0.4011 (4)0.0247 (3)0.0403 (5)
C60.61922 (9)0.1936 (4)0.0516 (4)0.0518 (6)
H60.64750.09580.09480.062*
C90.31568 (9)0.2274 (4)0.1199 (3)0.0463 (6)
H90.31320.36680.18040.056*
C100.26894 (9)0.0849 (4)0.1093 (3)0.0499 (7)
H100.23510.13330.16290.060*
C50.56238 (9)0.1309 (4)0.0638 (4)0.0541 (7)
H50.55260.00890.11560.065*
C110.31825 (8)0.1789 (4)0.0526 (3)0.0485 (6)
H110.31960.31860.11310.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0343 (8)0.0535 (11)0.0821 (13)0.0041 (7)0.0031 (10)0.0010 (11)
O20.0315 (8)0.0521 (10)0.0861 (14)0.0023 (7)0.0054 (9)0.0184 (11)
N10.0361 (10)0.0534 (13)0.0569 (12)0.0003 (10)0.0028 (10)0.0084 (12)
C20.0414 (13)0.0342 (13)0.0569 (17)0.0032 (10)0.0020 (12)0.0076 (12)
C80.0350 (11)0.0406 (13)0.0416 (13)0.0046 (10)0.0013 (11)0.0052 (12)
C70.0378 (12)0.0438 (13)0.0472 (15)0.0026 (10)0.0045 (12)0.0016 (14)
C120.0333 (12)0.0500 (15)0.0510 (14)0.0030 (11)0.0049 (12)0.0009 (14)
C30.0413 (13)0.0392 (14)0.0577 (16)0.0057 (11)0.0009 (13)0.0070 (13)
C40.0313 (11)0.0430 (13)0.0487 (14)0.0001 (10)0.0011 (10)0.0034 (12)
C10.0329 (11)0.0421 (13)0.0460 (14)0.0004 (10)0.0000 (12)0.0045 (13)
C60.0375 (12)0.0489 (15)0.0690 (17)0.0089 (11)0.0008 (14)0.0165 (15)
C90.0425 (13)0.0437 (15)0.0528 (15)0.0036 (12)0.0052 (11)0.0025 (13)
C100.0367 (13)0.0554 (17)0.0577 (16)0.0096 (12)0.0054 (12)0.0097 (15)
C50.0424 (13)0.0429 (14)0.0771 (18)0.0008 (11)0.0026 (14)0.0206 (16)
C110.0432 (12)0.0516 (16)0.0506 (14)0.0007 (12)0.0004 (12)0.0006 (14)
Geometric parameters (Å, º) top
O1—C11.372 (2)C12—C111.386 (3)
O1—H10.8200C12—H120.9300
O2—C41.382 (2)C3—C41.368 (3)
O2—C71.417 (2)C3—H30.9300
N1—C111.334 (3)C4—C51.377 (3)
N1—C101.340 (3)C1—C61.380 (3)
C2—C11.373 (3)C6—C51.382 (3)
C2—C31.397 (3)C6—H60.9300
C2—H20.9300C9—C101.376 (3)
C8—C121.381 (3)C9—H90.9300
C8—C91.384 (3)C10—H100.9300
C8—C71.517 (3)C5—H50.9300
C7—H7A0.9700C11—H110.9300
C7—H7B0.9700
C1—O1—H1109.5C3—C4—C5119.98 (18)
C4—O2—C7118.54 (17)C3—C4—O2126.16 (19)
C11—N1—C10115.8 (2)C5—C4—O2113.8 (2)
C1—C2—C3121.0 (2)O1—C1—C2118.5 (2)
C1—C2—H2119.5O1—C1—C6122.45 (19)
C3—C2—H2119.5C2—C1—C6119.08 (19)
C12—C8—C9117.8 (2)C1—C6—C5120.1 (2)
C12—C8—C7122.01 (19)C1—C6—H6119.9
C9—C8—C7120.2 (2)C5—C6—H6119.9
O2—C7—C8107.36 (18)C10—C9—C8119.2 (2)
O2—C7—H7A110.2C10—C9—H9120.4
C8—C7—H7A110.2C8—C9—H9120.4
O2—C7—H7B110.2N1—C10—C9124.1 (2)
C8—C7—H7B110.2N1—C10—H10118.0
H7A—C7—H7B108.5C9—C10—H10118.0
C8—C12—C11118.8 (2)C4—C5—C6120.5 (2)
C8—C12—H12120.6C4—C5—H5119.7
C11—C12—H12120.6C6—C5—H5119.7
C4—C3—C2119.3 (2)N1—C11—C12124.4 (2)
C4—C3—H3120.3N1—C11—H11117.8
C2—C3—H3120.3C12—C11—H11117.8
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.952.763 (2)173
Symmetry code: (i) x+1/2, y, z.

Experimental details

Crystal data
Chemical formulaC12H11NO2
Mr201.22
Crystal system, space groupOrthorhombic, Pca21
Temperature (K)293
a, b, c (Å)23.398 (5), 5.8343 (12), 7.3934 (15)
V3)1009.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.50 × 0.37 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.956, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
8907, 2285, 1298
Rint0.066
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.077, 1.01
No. of reflections2285
No. of parameters138
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.14

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N1i0.821.952.763 (2)172.5
Symmetry code: (i) x+1/2, y, z.
 

Acknowledgements

This work was supported by a grant from the Two-Way Support Programs of Sichuan Agricultural University (project Nos. 00770115 & 00770116).

References

First citationGao, C.-M., Cao, D. & Zhu, L. (2004). Photogr. Sci. Photochem. 22, 103-107.  CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z., Li, Y.-J. & Gao, X.-M. (2009). Acta Cryst. E65, o3160.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1366
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds