organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1325

Di­ethyl 4-meth­oxyoxalyl-3,5-di­phenyl­pyrrolidine-2,2-di­carboxyl­ate

aChemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: heyanqin123@yahoo.com.cn

(Received 28 March 2012; accepted 30 March 2012; online 6 April 2012)

In the title compound, C25H27NO7, the pyrrolidine ring exhibits an envelope conformation and the benzene rings form a dihedral angle of 33.47 (11)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers. Weak C—H⋯O inter­actions link the dimers into layers parallel to the bc plane.

Related literature

For applications of pyrrolidine derivatives, see: Shih et al. (1995[Shih, N.-Y., Lupo, A. T., Aslanian, R., Orlando, S., Piwinski, J. J., Green, M. J., Ganguly, A. K., Clark, M. A. & Tozzi, S. (1995). J. Med. Chem. 38, 1593-1599.]); Enyedy et al. (2001[Enyedy, I. J., Zaman, W. A., Sakamuri, S., Kozikowski, A. P., Johnson, K. M. & Wang, S. (2001). Bioorg. Med. Chem. Lett. 11, 1113-1118.]); Kravchenko et al. (2005[Kravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. 40, 1377-1383.]); Lack et al. (2011[Lack, N. A., Axerio-Cilies, P., Tavassoli, P., Han, F. Q., Chan, K. H., Feau, C., LeBlanc, E., Guns, E. T., Guy, R. K., Rennie, P. S. & Cherkasov, A. (2011). J. Med. Chem. 54, 8563-8573.]).

[Scheme 1]

Experimental

Crystal data
  • C25H27NO7

  • Mr = 453.48

  • Monoclinic, P 21 /c

  • a = 8.8779 (3) Å

  • b = 20.3438 (6) Å

  • c = 13.5740 (5) Å

  • β = 102.213 (3)°

  • V = 2396.12 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 290 K

  • 0.38 × 0.35 × 0.30 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.966, Tmax = 0.973

  • 14990 measured reflections

  • 4887 independent reflections

  • 3129 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.133

  • S = 1.02

  • 4887 reflections

  • 305 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.88 (2) 2.27 (2) 3.061 (2) 150 (2)
C23—H23⋯O3ii 0.93 2.54 3.461 (3) 170
C25—H25⋯O7iii 0.93 2.60 3.526 (3) 172
Symmetry codes: (i) -x+2, -y, -z+2; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrrolidine derivatives have been found to be the core of numerous natural products and pharmaceutical candidates, see: Shih et al. (1995); Enyedy et al. (2001); Kravchenko et al. (2005); Lack et al. (2011). Herein, we report the crystal structure of the title compound (I).

The bond lengths and angles in (I) are normal. The pyrrolidine ring exhibits an envelope conformation, with the C2 atom occupying the flap position (Fig. 1). Two benzene rings - C12—C17 and C21—C26, respectively - form a dihedral angle of 33.47 (11)°. In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers, and weak C—H···O interactions (Table 1) link further these dimers into layers parallel to bc plane.

Related literature top

For applications of pyrrolidine derivatives, see: Shih et al. (1995); Enyedy et al. (2001); Kravchenko et al. (2005); Lack et al. (2011).

Experimental top

To a flame-dried test tube was added N,N-dimethyl-1-[2-(diphenylphosphino) ferrocenyl]ethylamine (0.04 mmol), copper(II) trifluoromethanesulfonate (0.04 mmol), THF (O.5 ml), benzaldehyde (0.24 mmol) and diethyl A-aminomalonate (0.24 mmol) under an argon atmosphere. After the mixture was stirred at room temperature for 2 h, a solution of 2-Oxo-4-phenyl-but-3-enoic acid methyl ester (0.2 mmol) in THF (1.0 ml) was added through a syringe in one portion and the resulting mixture was stirred at room temperature until TLC showed no starting material left. Then, solvent was removed and the residue was purified directly by silica gel column chromatography (eluent: petroleum ether / ethyl acetate = 20/1 to 5/1) to yield product. The colourless single crystals suitable for X-ray diffraction were obtained in methanol solvent by slow evaporation.

Refinement top

N-bound H atoms were located in a difference Fourier map and refined isotropically [N—H = 0.878 (16) Å]. The C-bound H atoms were placed in calculated positions, with C—H = 0.93 - 0.98 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids and the atomic numbering.
Diethyl 4-methoxyoxalyl-3,5-diphenylpyrrolidine-2,2-dicarboxylate top
Crystal data top
C25H27NO7F(000) = 960
Mr = 453.48Dx = 1.257 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4380 reflections
a = 8.8779 (3) Åθ = 3.2–29.1°
b = 20.3438 (6) ŵ = 0.09 mm1
c = 13.5740 (5) ÅT = 290 K
β = 102.213 (3)°Block, colorless
V = 2396.12 (14) Å30.38 × 0.35 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
4887 independent reflections
Radiation source: Enhance (Mo) X-ray Source3129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 15.9149 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
k = 2525
Tmin = 0.966, Tmax = 0.973l = 1614
14990 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.3662P]
where P = (Fo2 + 2Fc2)/3
4887 reflections(Δ/σ)max < 0.001
305 parametersΔρmax = 0.28 e Å3
8 restraintsΔρmin = 0.26 e Å3
Crystal data top
C25H27NO7V = 2396.12 (14) Å3
Mr = 453.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.8779 (3) ŵ = 0.09 mm1
b = 20.3438 (6) ÅT = 290 K
c = 13.5740 (5) Å0.38 × 0.35 × 0.30 mm
β = 102.213 (3)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
4887 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
3129 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.973Rint = 0.033
14990 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0518 restraints
wR(F2) = 0.133H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
4887 reflectionsΔρmin = 0.26 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.9482 (2)0.04749 (8)0.86894 (15)0.0445 (4)
O10.75874 (18)0.01366 (7)1.00477 (12)0.0587 (4)
O20.68505 (17)0.11814 (7)1.01209 (11)0.0537 (4)
O30.90888 (18)0.20277 (8)0.85551 (13)0.0627 (5)
O40.99367 (18)0.16006 (7)1.00924 (12)0.0606 (5)
O50.6663 (2)0.05129 (8)0.58463 (13)0.0646 (5)
O60.5961 (2)0.10174 (9)0.66768 (15)0.0833 (6)
O70.6680 (2)0.07505 (8)0.52526 (13)0.0672 (5)
C20.8329 (2)0.09267 (9)0.89093 (15)0.0390 (5)
C30.7135 (2)0.09231 (9)0.78941 (15)0.0393 (5)
H30.75900.11680.74080.047*
C40.7112 (2)0.01965 (9)0.75916 (16)0.0416 (5)
H40.63240.00270.78770.050*
C50.8726 (2)0.00897 (10)0.81100 (16)0.0427 (5)
H50.85750.04360.85820.051*
C60.7574 (2)0.06980 (10)0.97687 (16)0.0418 (5)
C70.5949 (3)0.10022 (14)1.0861 (2)0.0740 (8)
H7A0.52540.06441.06080.089*
H7B0.66250.08621.14830.089*
C80.5078 (5)0.15783 (19)1.1041 (3)0.1267 (13)
H8A0.45100.17461.04090.190*
H8B0.57730.19101.13720.190*
H8C0.43740.14601.14600.190*
C90.9123 (2)0.15908 (11)0.91495 (18)0.0453 (5)
C101.0665 (3)0.22220 (14)1.0448 (2)0.0809 (9)
H10A1.10180.24390.99020.097*
H10B1.15550.21401.09860.097*
C110.9557 (4)0.26554 (15)1.0823 (3)0.1000 (11)
H11A0.86840.27411.02870.150*
H11B1.00530.30631.10560.150*
H11C0.92190.24421.13690.150*
C120.5595 (2)0.12441 (10)0.79130 (15)0.0412 (5)
C130.4339 (2)0.09043 (12)0.81017 (19)0.0570 (6)
H130.43960.04500.81800.068*
C140.3000 (3)0.12289 (14)0.8176 (2)0.0704 (7)
H140.21690.09910.83070.084*
C150.2887 (3)0.18935 (14)0.8060 (2)0.0683 (7)
H150.19880.21100.81180.082*
C160.4104 (3)0.22371 (13)0.7859 (2)0.0671 (7)
H160.40330.26910.77760.080*
C170.5440 (3)0.19164 (10)0.77789 (18)0.0545 (6)
H170.62550.21570.76310.065*
C180.6739 (2)0.00889 (10)0.64679 (17)0.0459 (5)
C190.6410 (3)0.06290 (12)0.61527 (19)0.0533 (6)
C200.6394 (4)0.14192 (14)0.4894 (2)0.0933 (10)
H20A0.66110.14570.42320.140*
H20B0.53350.15300.48660.140*
H20C0.70480.17140.53450.140*
C210.9705 (2)0.03601 (10)0.74167 (17)0.0466 (5)
C220.9944 (3)0.10277 (12)0.7365 (2)0.0651 (7)
H220.94940.13110.77570.078*
C231.0847 (4)0.12831 (15)0.6737 (2)0.0820 (9)
H231.09980.17340.67090.098*
C241.1512 (4)0.08695 (18)0.6163 (2)0.0861 (9)
H241.21270.10400.57480.103*
C251.1283 (3)0.02117 (16)0.6190 (2)0.0783 (8)
H251.17300.00670.57900.094*
C261.0380 (3)0.00470 (12)0.68185 (19)0.0611 (6)
H261.02280.04990.68360.073*
H1N1.016 (2)0.0357 (10)0.9232 (14)0.054 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0426 (10)0.0438 (10)0.0464 (12)0.0056 (8)0.0077 (9)0.0022 (9)
O10.0719 (11)0.0459 (9)0.0627 (11)0.0056 (7)0.0240 (8)0.0149 (8)
O20.0648 (10)0.0496 (9)0.0533 (10)0.0054 (7)0.0277 (8)0.0016 (7)
O30.0745 (11)0.0482 (9)0.0640 (11)0.0176 (8)0.0113 (9)0.0053 (9)
O40.0645 (10)0.0603 (10)0.0520 (10)0.0165 (8)0.0009 (8)0.0057 (8)
O50.0861 (12)0.0569 (10)0.0495 (10)0.0043 (8)0.0110 (9)0.0064 (8)
O60.1233 (17)0.0567 (11)0.0763 (14)0.0250 (10)0.0357 (12)0.0118 (10)
O70.0863 (12)0.0633 (11)0.0497 (11)0.0081 (9)0.0093 (9)0.0136 (9)
C20.0406 (11)0.0356 (10)0.0417 (12)0.0003 (8)0.0104 (9)0.0006 (9)
C30.0429 (11)0.0374 (11)0.0384 (12)0.0001 (8)0.0106 (9)0.0025 (9)
C40.0456 (12)0.0371 (11)0.0438 (13)0.0015 (8)0.0131 (9)0.0003 (9)
C50.0505 (12)0.0372 (11)0.0418 (12)0.0025 (9)0.0131 (10)0.0036 (9)
C60.0425 (11)0.0418 (12)0.0402 (12)0.0015 (9)0.0066 (9)0.0012 (10)
C70.0804 (18)0.0894 (19)0.0637 (18)0.0056 (14)0.0409 (15)0.0081 (15)
C80.142 (2)0.132 (2)0.129 (2)0.0343 (16)0.0808 (17)0.0039 (16)
C90.0423 (12)0.0439 (12)0.0519 (15)0.0020 (9)0.0152 (10)0.0022 (11)
C100.087 (2)0.0787 (19)0.072 (2)0.0357 (16)0.0045 (16)0.0169 (16)
C110.141 (3)0.072 (2)0.085 (2)0.012 (2)0.019 (2)0.0180 (18)
C120.0449 (12)0.0424 (11)0.0368 (12)0.0007 (9)0.0094 (9)0.0013 (9)
C130.0479 (13)0.0519 (13)0.0731 (18)0.0032 (10)0.0171 (12)0.0031 (12)
C140.0472 (14)0.0823 (19)0.085 (2)0.0060 (13)0.0218 (13)0.0096 (16)
C150.0543 (15)0.085 (2)0.0671 (18)0.0218 (13)0.0154 (13)0.0022 (15)
C160.0718 (17)0.0548 (15)0.0766 (19)0.0199 (13)0.0201 (14)0.0073 (13)
C170.0546 (14)0.0469 (13)0.0642 (16)0.0049 (10)0.0171 (12)0.0077 (11)
C180.0439 (12)0.0464 (12)0.0471 (13)0.0020 (9)0.0087 (10)0.0010 (11)
C190.0553 (14)0.0530 (14)0.0491 (15)0.0012 (11)0.0056 (11)0.0052 (12)
C200.131 (3)0.0688 (18)0.072 (2)0.0200 (17)0.0035 (19)0.0275 (16)
C210.0476 (12)0.0470 (13)0.0442 (13)0.0067 (9)0.0072 (10)0.0009 (10)
C220.0812 (18)0.0505 (14)0.0649 (17)0.0158 (12)0.0183 (14)0.0015 (12)
C230.102 (2)0.0648 (18)0.080 (2)0.0265 (16)0.0218 (18)0.0160 (16)
C240.083 (2)0.103 (2)0.077 (2)0.0192 (18)0.0290 (17)0.025 (2)
C250.0768 (19)0.100 (2)0.0669 (19)0.0079 (16)0.0358 (15)0.0105 (17)
C260.0670 (16)0.0576 (15)0.0631 (17)0.0018 (12)0.0236 (13)0.0036 (13)
Geometric parameters (Å, º) top
N1—C21.453 (2)C10—H10A0.9700
N1—C51.472 (3)C10—H10B0.9700
N1—H1N0.878 (16)C11—H11A0.9600
O1—C61.203 (2)C11—H11B0.9600
O2—C61.318 (2)C11—H11C0.9600
O2—C71.457 (3)C12—C131.381 (3)
O3—C91.196 (3)C12—C171.383 (3)
O4—C91.330 (3)C13—C141.382 (3)
O4—C101.455 (3)C13—H130.9300
O5—C181.198 (3)C14—C151.362 (4)
O6—C191.187 (3)C14—H140.9300
O7—C191.317 (3)C15—C161.362 (4)
O7—C201.449 (3)C15—H150.9300
C2—C91.527 (3)C16—C171.378 (3)
C2—C61.536 (3)C16—H160.9300
C2—C31.551 (3)C17—H170.9300
C3—C121.520 (3)C18—C191.533 (3)
C3—C41.533 (3)C20—H20A0.9600
C3—H30.9800C20—H20B0.9600
C4—C181.507 (3)C20—H20C0.9600
C4—C51.569 (3)C21—C221.379 (3)
C4—H40.9800C21—C261.382 (3)
C5—C211.513 (3)C22—C231.388 (4)
C5—H50.9800C22—H220.9300
C7—C81.453 (4)C23—C241.364 (4)
C7—H7A0.9700C23—H230.9300
C7—H7B0.9700C24—C251.355 (4)
C8—H8A0.9600C24—H240.9300
C8—H8B0.9600C25—C261.392 (4)
C8—H8C0.9600C25—H250.9300
C10—C111.489 (4)C26—H260.9300
C2—N1—C5110.00 (16)C10—C11—H11A109.5
C2—N1—H1N112.7 (15)C10—C11—H11B109.5
C5—N1—H1N112.8 (14)H11A—C11—H11B109.5
C6—O2—C7116.37 (18)C10—C11—H11C109.5
C9—O4—C10116.42 (19)H11A—C11—H11C109.5
C19—O7—C20115.8 (2)H11B—C11—H11C109.5
N1—C2—C9106.88 (16)C13—C12—C17117.3 (2)
N1—C2—C6113.85 (16)C13—C12—C3123.52 (18)
C9—C2—C6111.21 (17)C17—C12—C3119.14 (18)
N1—C2—C3101.17 (16)C12—C13—C14121.0 (2)
C9—C2—C3113.06 (16)C12—C13—H13119.5
C6—C2—C3110.31 (15)C14—C13—H13119.5
C12—C3—C4117.24 (16)C15—C14—C13120.6 (2)
C12—C3—C2115.56 (17)C15—C14—H14119.7
C4—C3—C2102.13 (15)C13—C14—H14119.7
C12—C3—H3107.1C16—C15—C14119.4 (2)
C4—C3—H3107.1C16—C15—H15120.3
C2—C3—H3107.1C14—C15—H15120.3
C18—C4—C3113.50 (17)C15—C16—C17120.4 (2)
C18—C4—C5112.60 (17)C15—C16—H16119.8
C3—C4—C5106.19 (15)C17—C16—H16119.8
C18—C4—H4108.1C16—C17—C12121.4 (2)
C3—C4—H4108.1C16—C17—H17119.3
C5—C4—H4108.1C12—C17—H17119.3
N1—C5—C21111.04 (17)O5—C18—C4125.16 (19)
N1—C5—C4102.72 (15)O5—C18—C19120.7 (2)
C21—C5—C4116.51 (17)C4—C18—C19114.14 (19)
N1—C5—H5108.8O6—C19—O7125.5 (2)
C21—C5—H5108.8O6—C19—C18122.4 (2)
C4—C5—H5108.8O7—C19—C18112.1 (2)
O1—C6—O2124.6 (2)O7—C20—H20A109.5
O1—C6—C2123.36 (19)O7—C20—H20B109.5
O2—C6—C2111.96 (17)H20A—C20—H20B109.5
C8—C7—O2107.7 (2)O7—C20—H20C109.5
C8—C7—H7A110.2H20A—C20—H20C109.5
O2—C7—H7A110.2H20B—C20—H20C109.5
C8—C7—H7B110.2C22—C21—C26118.0 (2)
O2—C7—H7B110.2C22—C21—C5120.3 (2)
H7A—C7—H7B108.5C26—C21—C5121.66 (19)
C7—C8—H8A109.5C21—C22—C23121.0 (3)
C7—C8—H8B109.5C21—C22—H22119.5
H8A—C8—H8B109.5C23—C22—H22119.5
C7—C8—H8C109.5C24—C23—C22119.7 (3)
H8A—C8—H8C109.5C24—C23—H23120.1
H8B—C8—H8C109.5C22—C23—H23120.1
O3—C9—O4124.67 (19)C25—C24—C23120.5 (3)
O3—C9—C2124.7 (2)C25—C24—H24119.7
O4—C9—C2110.54 (18)C23—C24—H24119.7
O4—C10—C11110.4 (2)C24—C25—C26120.0 (3)
O4—C10—H10A109.6C24—C25—H25120.0
C11—C10—H10A109.6C26—C25—H25120.0
O4—C10—H10B109.6C21—C26—C25120.7 (2)
C11—C10—H10B109.6C21—C26—H26119.6
H10A—C10—H10B108.1C25—C26—H26119.6
C5—N1—C2—C9159.71 (17)C9—O4—C10—C1184.5 (3)
C5—N1—C2—C677.1 (2)C4—C3—C12—C1328.5 (3)
C5—N1—C2—C341.2 (2)C2—C3—C12—C1392.0 (2)
N1—C2—C3—C12168.35 (16)C4—C3—C12—C17154.38 (19)
C9—C2—C3—C1277.7 (2)C2—C3—C12—C1785.1 (2)
C6—C2—C3—C1247.5 (2)C17—C12—C13—C141.5 (4)
N1—C2—C3—C439.90 (18)C3—C12—C13—C14175.6 (2)
C9—C2—C3—C4153.85 (16)C12—C13—C14—C150.3 (4)
C6—C2—C3—C480.93 (19)C13—C14—C15—C160.6 (4)
C12—C3—C4—C1882.3 (2)C14—C15—C16—C170.3 (4)
C2—C3—C4—C18150.29 (17)C15—C16—C17—C121.0 (4)
C12—C3—C4—C5153.43 (17)C13—C12—C17—C161.9 (4)
C2—C3—C4—C526.1 (2)C3—C12—C17—C16175.4 (2)
C2—N1—C5—C21149.70 (17)C3—C4—C18—O59.5 (3)
C2—N1—C5—C424.5 (2)C5—C4—C18—O5111.1 (2)
C18—C4—C5—N1127.43 (18)C3—C4—C18—C19169.00 (17)
C3—C4—C5—N12.6 (2)C5—C4—C18—C1970.3 (2)
C18—C4—C5—C215.8 (2)C20—O7—C19—O60.1 (4)
C3—C4—C5—C21118.94 (19)C20—O7—C19—C18179.9 (2)
C7—O2—C6—O13.3 (3)O5—C18—C19—O6153.7 (2)
C7—O2—C6—C2173.36 (18)C4—C18—C19—O624.9 (3)
N1—C2—C6—O119.7 (3)O5—C18—C19—O726.1 (3)
C9—C2—C6—O1140.5 (2)C4—C18—C19—O7155.34 (19)
C3—C2—C6—O193.2 (2)N1—C5—C21—C22133.7 (2)
N1—C2—C6—O2163.56 (16)C4—C5—C21—C22109.2 (2)
C9—C2—C6—O242.8 (2)N1—C5—C21—C2646.4 (3)
C3—C2—C6—O283.5 (2)C4—C5—C21—C2670.7 (3)
C6—O2—C7—C8171.9 (3)C26—C21—C22—C230.5 (4)
C10—O4—C9—O38.3 (3)C5—C21—C22—C23179.6 (2)
C10—O4—C9—C2175.66 (19)C21—C22—C23—C240.1 (4)
N1—C2—C9—O396.2 (2)C22—C23—C24—C250.8 (5)
C6—C2—C9—O3139.0 (2)C23—C24—C25—C260.8 (5)
C3—C2—C9—O314.3 (3)C22—C21—C26—C250.5 (4)
N1—C2—C9—O479.9 (2)C5—C21—C26—C25179.6 (2)
C6—C2—C9—O445.0 (2)C24—C25—C26—C210.1 (4)
C3—C2—C9—O4169.70 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.88 (2)2.27 (2)3.061 (2)150 (2)
C23—H23···O3ii0.932.543.461 (3)170
C25—H25···O7iii0.932.603.526 (3)172
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y1/2, z+3/2; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC25H27NO7
Mr453.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)290
a, b, c (Å)8.8779 (3), 20.3438 (6), 13.5740 (5)
β (°) 102.213 (3)
V3)2396.12 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.38 × 0.35 × 0.30
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
Tmin, Tmax0.966, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
14990, 4887, 3129
Rint0.033
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.133, 1.02
No. of reflections4887
No. of parameters305
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.26

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.878 (16)2.269 (18)3.061 (2)150 (2)
C23—H23···O3ii0.932.543.461 (3)169.6
C25—H25···O7iii0.932.603.526 (3)172.2
Symmetry codes: (i) x+2, y, z+2; (ii) x+2, y1/2, z+3/2; (iii) x+2, y, z+1.
 

Acknowledgements

The authors thank the Centre for Testing and Analysis, Cheng Du Branch Chinese Academy of Sciences, for analytic support.

References

First citationEnyedy, I. J., Zaman, W. A., Sakamuri, S., Kozikowski, A. P., Johnson, K. M. & Wang, S. (2001). Bioorg. Med. Chem. Lett. 11, 1113–1118.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. 40, 1377–1383.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLack, N. A., Axerio-Cilies, P., Tavassoli, P., Han, F. Q., Chan, K. H., Feau, C., LeBlanc, E., Guns, E. T., Guy, R. K., Rennie, P. S. & Cherkasov, A. (2011). J. Med. Chem. 54, 8563–8573.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShih, N.-Y., Lupo, A. T., Aslanian, R., Orlando, S., Piwinski, J. J., Green, M. J., Ganguly, A. K., Clark, M. A. & Tozzi, S. (1995). J. Med. Chem. 38, 1593–1599.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1325
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds