organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1358

4,4′-{[4-(2,2′:6′,2′′-Terpyridin-4′-yl)phen­yl]imino}­dibenzaldehyde

aDepartment of Chemistry, Anhui University, Hefei 230039, People's Republic of China and, Key Laboratory of Functional Inorganic Materials, Chemistry, Hefei 230039, People's Republic of China
*Correspondence e-mail: jywu1957@163.com

(Received 28 March 2012; accepted 4 April 2012; online 13 April 2012)

The central pyridine ring of the 2,2′:6′,2′′-terpyridine fragment of the title compound, C35H24N4O2, forms dihedral angles of 8.3 (2), 10.6 (3) and 39.4 (3)°, respectively, with the two outer pyridine rings and the attached benzene ring. In the crystal, weak C—H⋯O inter­actions link the mol­ecules into chains in [010].

Related literature

For supra­molecular assemblies and composite fluorescent sensors of related substituted terpyridines, see: Cargill Thompson (1997[Cargill Thompson, A. M. W. (1997). Coord. Chem. Rev. 160, 1-48.]); Goodall et al. (2002[Goodall, W., Wild, K., Arm, K. J. & Williams, J. A. G. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1669-1681.]); Mutai et al. (2001[Mutai, T., Cheon, J.-D., Arita, S. & Araki, K. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1045-1050.]). For related reviews, see: Heller & Schubert (2003[Heller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. pp. 947-961.]); Fallahpour et al. (2003[Fallahpour, R.-A. (2003). Synthesis (Stuttgart), pp. 155-184.]). For details of the synthesis, see: Krohnke (1976[Krohnke, F. (1976). Synthesis (Stuttgart), pp. 1-24.]).

[Scheme 1]

Experimental

Crystal data
  • C35H24N4O2

  • Mr = 532.58

  • Orthorhombic, P b c a

  • a = 11.2518 (14) Å

  • b = 18.380 (2) Å

  • c = 25.860 (3) Å

  • V = 5348.1 (12) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.983, Tmax = 0.992

  • 36182 measured reflections

  • 4712 independent reflections

  • 3293 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.123

  • S = 1.06

  • 4712 reflections

  • 370 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C27—H27⋯O1i 0.93 2.46 3.339 (3) 158
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Substituted terpyridines are frequently used as building blocks for supramolecular assemblies and composite fluorescent sensors (Cargill Thompson, 1997; Goodall et al., 2002; Mutai et al., 2001), and several reviews were published on the subject (Heller et al., 2003; Fallahpour et al., 2003). The title compound (I) can be used as intermediate in the synthesis of terpyridines, and here we report its crystal structure.

In (I) (Fig.1), the central pyridine ring of the 2,2':6',2''-terpyridine fragment forms dihedral angles of 8.3 (2), 10.6 (3) and 39.4 (3) °, respectively, with the two outer pyridine rings and the attached benzene ring. Weak intermolecular C—H···O interactions (Table 1) link the molecules into chains in [010].

Related literature top

For supramolecular assemblies and composite fluorescent sensors of related substituted terpyridines, see: Cargill Thompson (1997); Goodall et al. (2002); Mutai et al. (2001). For related reviews, see: Heller & Schubert (2003); Fallahpour et al. (2003). For details of the synthesis, see: Krohnke (1976).

Experimental top

DMF (2 g, 27.4 mmol) was added to a three-necked flask in ice equipped with a magnetic stirrer and a reflux condenser, then POCl3 (4.0 g, 26.4 mmol) was added dropwisely (about 30 min), then 4'-(4-(diphenylamino)phenyl)-2,2':6',2''-terpyridine)(3.0 g, 6.2 mmol), which was synthesized using Krohnke's method (Krohnke, 1976.), dissolved in 50 ml of chloroform and added to the frozen salt, stirring for 36 h at 355 K. After being cooled to room temperature, the mixture was poured into a large amount of ice water and adjusted to the pH= 8 with sodium hydroxide. After extraction with CH2Cl2 (4 x 20 ml), the combined organic phase was dried over anhydrous Na2SO4 and evaporated to give a yellow solid. Purification by column chromatography (silica, petroleum: ethyl acetate=5:1, yield: 50%) 1H NMR (DMSO-d6, 400 MHz): 9.92 (s, 2H), 8.75–8.77 (m, 4H), 8.69 (d, 2H, J=7.6 Hz), 8.02–8.05 (m, 4H), 7.90 (d, 4H, J=7.6 Hz), 7.53 (t, 2H, J=6.4 Hz), 7.38 (d, 2H, J=8.8 Hz), 7.28 (d, 4H, J=8.4 Hz). MS: m/z (%) = 504.20 (100). FT—IR (KBr, cm-1): 3464, 3060, 2919, 2850, 1714, 1546, 1508, 1474, 1434, 1365, 1321, 1179, 1111, 1069, 1015, 968, 834, 793, 769, 731, 702, 659, 637, 528.

Refinement top

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. : The molecular structure of (I) showing 30% probability displacement ellipsoids.
4,4'-{[4-(2,2':6',2''-Terpyridin-4'-yl)phenyl]imino}dibenzaldehyde top
Crystal data top
C35H24N4O2F(000) = 2224
Mr = 532.58Dx = 1.323 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 6054 reflections
a = 11.2518 (14) Åθ = 2.3–23.1°
b = 18.380 (2) ŵ = 0.08 mm1
c = 25.860 (3) ÅT = 296 K
V = 5348.1 (12) Å3Block, yellow
Z = 80.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4712 independent reflections
Radiation source: fine-focus sealed tube3293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.983, Tmax = 0.992k = 2121
36182 measured reflectionsl = 3029
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.054P)2 + 1.1184P]
where P = (Fo2 + 2Fc2)/3
4712 reflections(Δ/σ)max = 0.001
370 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C35H24N4O2V = 5348.1 (12) Å3
Mr = 532.58Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.2518 (14) ŵ = 0.08 mm1
b = 18.380 (2) ÅT = 296 K
c = 25.860 (3) Å0.20 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4712 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3293 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.992Rint = 0.037
36182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
4712 reflectionsΔρmin = 0.19 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.34362 (17)1.12523 (9)0.52197 (7)0.0503 (5)
C20.40956 (19)1.17424 (10)0.49311 (8)0.0609 (5)
H20.49191.17060.49170.073*
C30.3512 (2)1.22853 (11)0.46644 (9)0.0737 (6)
H30.39371.26160.44650.088*
C40.2298 (2)1.23319 (12)0.46969 (10)0.0818 (7)
H40.18821.26940.45220.098*
C50.1719 (2)1.18318 (13)0.49930 (11)0.0870 (8)
H50.08961.18670.50160.104*
C60.40117 (15)1.06344 (9)0.54985 (6)0.0451 (4)
C70.33297 (15)1.00924 (9)0.57239 (7)0.0488 (4)
H70.25051.01160.57070.059*
C80.38747 (15)0.95134 (9)0.59748 (7)0.0453 (4)
C90.51034 (15)0.95181 (9)0.59970 (6)0.0463 (4)
H90.55040.91490.61710.056*
C100.57403 (15)1.00742 (9)0.57600 (6)0.0436 (4)
C110.70587 (15)1.00773 (9)0.57624 (7)0.0479 (4)
C120.76956 (17)1.05690 (11)0.54670 (8)0.0587 (5)
H120.73001.09100.52640.070*
C130.89120 (19)1.05502 (13)0.54752 (9)0.0708 (6)
H130.93521.08750.52770.085*
C140.94687 (18)1.00474 (13)0.57796 (9)0.0767 (7)
H141.02941.00230.57930.092*
C150.87852 (19)0.95816 (14)0.60630 (10)0.0831 (7)
H150.91690.92400.62690.100*
C160.31729 (15)0.88945 (9)0.61836 (7)0.0457 (4)
C170.34900 (15)0.85442 (10)0.66384 (7)0.0499 (5)
H170.41400.87110.68260.060*
C180.28553 (15)0.79505 (10)0.68166 (7)0.0514 (5)
H180.30820.77230.71220.062*
C190.18861 (15)0.76917 (9)0.65435 (7)0.0470 (4)
C200.15636 (16)0.80334 (11)0.60891 (7)0.0568 (5)
H200.09200.78610.58990.068*
C210.21940 (16)0.86300 (10)0.59159 (7)0.0556 (5)
H210.19570.88600.56130.067*
C220.00413 (15)0.71474 (9)0.67351 (6)0.0451 (4)
C230.07646 (16)0.65568 (10)0.66192 (7)0.0542 (5)
H230.04260.61070.65460.065*
C240.19783 (17)0.66359 (12)0.66123 (8)0.0629 (5)
H240.24540.62350.65410.075*
C250.25059 (18)0.73015 (12)0.67098 (8)0.0620 (5)
C260.17818 (18)0.78851 (11)0.68230 (8)0.0644 (6)
H260.21240.83370.68870.077*
C270.05665 (17)0.78156 (10)0.68434 (7)0.0563 (5)
H270.00970.82140.69290.068*
C280.3793 (2)0.74042 (18)0.66989 (12)0.0966 (9)
H280.40930.78510.68060.116*
C290.17967 (15)0.64554 (9)0.69077 (7)0.0459 (4)
C300.28969 (15)0.62576 (10)0.67059 (8)0.0545 (5)
H300.32390.65340.64440.065*
C310.34788 (17)0.56553 (10)0.68920 (8)0.0580 (5)
H310.42170.55310.67570.070*
C320.29803 (17)0.52300 (10)0.72789 (9)0.0591 (5)
C330.18863 (18)0.54246 (11)0.74709 (9)0.0665 (6)
H330.15380.51390.77260.080*
C340.12955 (16)0.60295 (10)0.72950 (8)0.0559 (5)
H340.05610.61540.74350.067*
C350.3592 (2)0.45935 (13)0.74879 (12)0.0892 (8)
H350.32140.43470.77560.107*
N10.22517 (15)1.12938 (9)0.52524 (7)0.0720 (5)
N20.52047 (13)1.06278 (7)0.55086 (5)0.0467 (4)
N30.75941 (15)0.95862 (10)0.60629 (7)0.0697 (5)
N40.12091 (12)0.70849 (8)0.67281 (6)0.0514 (4)
O10.45218 (17)0.43587 (9)0.73507 (9)0.1106 (7)
O20.44856 (17)0.69503 (14)0.65606 (10)0.1367 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0571 (12)0.0409 (10)0.0530 (11)0.0006 (9)0.0039 (9)0.0025 (8)
C20.0663 (13)0.0489 (11)0.0675 (13)0.0052 (10)0.0007 (10)0.0078 (10)
C30.0953 (18)0.0521 (13)0.0735 (14)0.0074 (12)0.0005 (13)0.0187 (11)
C40.0900 (18)0.0591 (14)0.0962 (17)0.0123 (13)0.0114 (14)0.0217 (13)
C50.0669 (15)0.0736 (15)0.121 (2)0.0161 (12)0.0007 (14)0.0341 (15)
C60.0475 (10)0.0395 (10)0.0482 (10)0.0007 (8)0.0057 (8)0.0008 (8)
C70.0398 (10)0.0467 (10)0.0597 (11)0.0015 (8)0.0058 (8)0.0025 (9)
C80.0451 (10)0.0411 (10)0.0496 (10)0.0026 (8)0.0054 (8)0.0016 (8)
C90.0458 (10)0.0410 (10)0.0520 (11)0.0011 (8)0.0040 (8)0.0043 (8)
C100.0448 (10)0.0411 (9)0.0451 (10)0.0026 (8)0.0035 (8)0.0013 (8)
C110.0460 (10)0.0470 (10)0.0506 (10)0.0055 (8)0.0035 (8)0.0002 (9)
C120.0519 (12)0.0587 (12)0.0656 (12)0.0069 (9)0.0079 (9)0.0106 (10)
C130.0561 (13)0.0763 (15)0.0800 (15)0.0179 (11)0.0131 (11)0.0092 (12)
C140.0415 (11)0.1014 (18)0.0873 (16)0.0072 (12)0.0038 (11)0.0053 (15)
C150.0515 (13)0.0987 (18)0.0991 (18)0.0007 (12)0.0051 (12)0.0326 (15)
C160.0394 (9)0.0439 (10)0.0537 (11)0.0013 (8)0.0066 (8)0.0063 (8)
C170.0418 (10)0.0495 (10)0.0584 (11)0.0075 (8)0.0043 (8)0.0066 (9)
C180.0486 (11)0.0507 (11)0.0548 (11)0.0058 (9)0.0048 (8)0.0122 (9)
C190.0400 (10)0.0462 (10)0.0547 (11)0.0052 (8)0.0035 (8)0.0089 (8)
C200.0491 (11)0.0640 (12)0.0572 (12)0.0177 (9)0.0084 (9)0.0136 (10)
C210.0528 (12)0.0614 (12)0.0524 (11)0.0079 (9)0.0040 (9)0.0182 (9)
C220.0410 (10)0.0461 (10)0.0481 (10)0.0039 (8)0.0035 (8)0.0052 (8)
C230.0498 (11)0.0492 (11)0.0635 (12)0.0060 (9)0.0000 (9)0.0090 (9)
C240.0512 (12)0.0685 (14)0.0689 (13)0.0140 (10)0.0033 (10)0.0010 (11)
C250.0467 (11)0.0722 (14)0.0673 (13)0.0009 (11)0.0063 (10)0.0124 (11)
C260.0586 (13)0.0556 (12)0.0790 (14)0.0121 (11)0.0145 (11)0.0089 (11)
C270.0570 (12)0.0433 (10)0.0686 (13)0.0050 (9)0.0059 (10)0.0018 (9)
C280.0526 (15)0.109 (2)0.128 (2)0.0051 (15)0.0031 (15)0.0315 (18)
C290.0407 (9)0.0419 (9)0.0551 (11)0.0065 (8)0.0004 (8)0.0027 (8)
C300.0479 (11)0.0549 (12)0.0607 (12)0.0046 (9)0.0073 (9)0.0045 (9)
C310.0456 (11)0.0526 (12)0.0758 (14)0.0023 (9)0.0004 (10)0.0089 (10)
C320.0512 (12)0.0387 (10)0.0874 (15)0.0064 (9)0.0086 (10)0.0035 (10)
C330.0591 (13)0.0557 (12)0.0847 (15)0.0117 (10)0.0010 (11)0.0223 (11)
C340.0438 (11)0.0532 (11)0.0705 (13)0.0042 (9)0.0064 (9)0.0122 (10)
C350.0667 (16)0.0538 (14)0.147 (2)0.0014 (12)0.0160 (16)0.0119 (15)
N10.0570 (11)0.0634 (11)0.0954 (14)0.0112 (9)0.0064 (9)0.0245 (10)
N20.0498 (9)0.0417 (8)0.0487 (9)0.0042 (7)0.0042 (7)0.0006 (7)
N30.0460 (10)0.0787 (12)0.0845 (12)0.0026 (9)0.0007 (9)0.0254 (10)
N40.0414 (8)0.0448 (9)0.0680 (10)0.0063 (7)0.0020 (7)0.0137 (8)
O10.0873 (13)0.0626 (10)0.182 (2)0.0169 (10)0.0225 (13)0.0063 (11)
O20.0574 (12)0.160 (2)0.193 (2)0.0117 (13)0.0086 (13)0.0392 (18)
Geometric parameters (Å, º) top
C1—N11.338 (2)C18—C191.384 (2)
C1—C21.385 (3)C18—H180.9300
C1—C61.493 (2)C19—C201.381 (2)
C2—C31.379 (3)C19—N41.432 (2)
C2—H20.9300C20—C211.381 (2)
C3—C41.372 (3)C20—H200.9300
C3—H30.9300C21—H210.9300
C4—C51.362 (3)C22—C231.389 (2)
C4—H40.9300C22—C271.391 (2)
C5—N11.337 (3)C22—N41.412 (2)
C5—H50.9300C23—C241.373 (3)
C6—N21.343 (2)C23—H230.9300
C6—C71.386 (2)C24—C251.383 (3)
C7—C81.389 (2)C24—H240.9300
C7—H70.9300C25—C261.378 (3)
C8—C91.384 (2)C25—C281.460 (3)
C8—C161.486 (2)C26—C271.374 (3)
C9—C101.391 (2)C26—H260.9300
C9—H90.9300C27—H270.9300
C10—N21.350 (2)C28—O21.197 (3)
C10—C111.483 (2)C28—H280.9300
C11—N31.335 (2)C29—C341.391 (2)
C11—C121.383 (2)C29—C301.392 (2)
C12—C131.369 (3)C29—N41.411 (2)
C12—H120.9300C30—C311.373 (3)
C13—C141.366 (3)C30—H300.9300
C13—H130.9300C31—C321.388 (3)
C14—C151.364 (3)C31—H310.9300
C14—H140.9300C32—C331.375 (3)
C15—N31.340 (3)C32—C351.461 (3)
C15—H150.9300C33—C341.373 (3)
C16—C171.388 (2)C33—H330.9300
C16—C211.389 (2)C34—H340.9300
C17—C181.383 (2)C35—O11.186 (3)
C17—H170.9300C35—H350.9300
N1—C1—C2122.04 (18)C18—C19—N4121.11 (16)
N1—C1—C6116.43 (16)C19—C20—C21120.15 (17)
C2—C1—C6121.51 (17)C19—C20—H20119.9
C3—C2—C1119.0 (2)C21—C20—H20119.9
C3—C2—H2120.5C20—C21—C16121.59 (17)
C1—C2—H2120.5C20—C21—H21119.2
C4—C3—C2119.3 (2)C16—C21—H21119.2
C4—C3—H3120.4C23—C22—C27118.96 (16)
C2—C3—H3120.4C23—C22—N4121.17 (16)
C5—C4—C3117.9 (2)C27—C22—N4119.85 (16)
C5—C4—H4121.0C24—C23—C22120.17 (18)
C3—C4—H4121.0C24—C23—H23119.9
N1—C5—C4124.5 (2)C22—C23—H23119.9
N1—C5—H5117.7C23—C24—C25121.20 (19)
C4—C5—H5117.7C23—C24—H24119.4
N2—C6—C7122.61 (16)C25—C24—H24119.4
N2—C6—C1116.73 (15)C26—C25—C24118.25 (19)
C7—C6—C1120.65 (16)C26—C25—C28119.3 (2)
C6—C7—C8120.17 (16)C24—C25—C28122.4 (2)
C6—C7—H7119.9C27—C26—C25121.59 (19)
C8—C7—H7119.9C27—C26—H26119.2
C9—C8—C7117.12 (16)C25—C26—H26119.2
C9—C8—C16121.36 (16)C26—C27—C22119.80 (18)
C7—C8—C16121.43 (15)C26—C27—H27120.1
C8—C9—C10120.08 (16)C22—C27—H27120.1
C8—C9—H9120.0O2—C28—C25124.2 (3)
C10—C9—H9120.0O2—C28—H28117.9
N2—C10—C9122.43 (16)C25—C28—H28117.9
N2—C10—C11116.46 (15)C34—C29—C30118.93 (17)
C9—C10—C11121.10 (16)C34—C29—N4120.57 (16)
N3—C11—C12121.97 (17)C30—C29—N4120.49 (16)
N3—C11—C10116.81 (15)C31—C30—C29120.22 (18)
C12—C11—C10121.22 (16)C31—C30—H30119.9
C13—C12—C11119.52 (19)C29—C30—H30119.9
C13—C12—H12120.2C30—C31—C32120.92 (18)
C11—C12—H12120.2C30—C31—H31119.5
C14—C13—C12119.0 (2)C32—C31—H31119.5
C14—C13—H13120.5C33—C32—C31118.40 (18)
C12—C13—H13120.5C33—C32—C35119.8 (2)
C15—C14—C13118.4 (2)C31—C32—C35121.8 (2)
C15—C14—H14120.8C34—C33—C32121.64 (19)
C13—C14—H14120.8C34—C33—H33119.2
N3—C15—C14124.0 (2)C32—C33—H33119.2
N3—C15—H15118.0C33—C34—C29119.87 (18)
C14—C15—H15118.0C33—C34—H34120.1
C17—C16—C21117.65 (16)C29—C34—H34120.1
C17—C16—C8121.77 (16)O1—C35—C32126.6 (3)
C21—C16—C8120.54 (16)O1—C35—H35116.7
C18—C17—C16121.05 (17)C32—C35—H35116.7
C18—C17—H17119.5C5—N1—C1117.21 (19)
C16—C17—H17119.5C6—N2—C10117.55 (14)
C17—C18—C19120.54 (17)C11—N3—C15117.11 (18)
C17—C18—H18119.7C29—N4—C22121.96 (14)
C19—C18—H18119.7C29—N4—C19119.92 (14)
C20—C19—C18119.02 (16)C22—N4—C19118.10 (14)
C20—C19—N4119.86 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···O1i0.932.463.339 (3)158
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC35H24N4O2
Mr532.58
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)11.2518 (14), 18.380 (2), 25.860 (3)
V3)5348.1 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.983, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
36182, 4712, 3293
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.123, 1.06
No. of reflections4712
No. of parameters370
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.19

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C27—H27···O1i0.932.463.339 (3)158
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 21071001) and the Education Committee of Anhui Province (grant No. KJ2010A030).

References

First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCargill Thompson, A. M. W. (1997). Coord. Chem. Rev. 160, 1–48.  CrossRef CAS Web of Science Google Scholar
First citationFallahpour, R.-A. (2003). Synthesis (Stuttgart), pp. 155–184.  Google Scholar
First citationGoodall, W., Wild, K., Arm, K. J. & Williams, J. A. G. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 1669–1681.  CrossRef Google Scholar
First citationHeller, M. & Schubert, U. S. (2003). Eur. J. Org. Chem. pp. 947–961.  CrossRef Google Scholar
First citationKrohnke, F. (1976). Synthesis (Stuttgart), pp. 1–24.  Google Scholar
First citationMutai, T., Cheon, J.-D., Arita, S. & Araki, K. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1045–1050.  CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1358
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds