metal-organic compounds
Bis{2-amino-2-oxo-N-[(1E)-1-(pyridin-2-yl-κN)ethylidene]acetohydrazidato-κ2N′,O1}nickel(II)
aDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal, and bCentre de Recherche de Gif sur Yvette, Institut de Chimie des Substances Naturelles, UPR2301-CNRS, 1 Avenue la Terrasse, 91198 Gif sur Yvette cédex, France
*Correspondence e-mail: mlgayeastou@yahoo.fr
In the title compound, [Ni(C9H9N4O2)2], the NiII ion is situated on a twofold rotation axis and is coordinated by two O and four N atoms from two tridentate {2-amino-2-oxo-N-[(1E)-1-(pyridin-2-yl-κN)ethylidene]acetohydrazidate ligands in a distorted octahedral geometry. In the crystal, N—H⋯O and N—H⋯N hydrogen bonds link the molecules into columns in [001]. The porous crystal packing is further stabilized via π–π interactions between the pyridine rings of neighbouring molecules [centroid–centroid distance = 3.746 (3) Å] with voids of 270 Å3.
Related literature
For the structures of related nickel complexes, see: Dieng et al. (2004); Tamboura et al. (2009); Mikuriya et al. (1996).
Experimental
Crystal data
|
Refinement
|
Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999); cell DENZO and COLLECT; data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and CRYSTALBUILDER (Welter, 2006); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S1600536812014109/cv5274sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812014109/cv5274Isup2.hkl
2-Amino-2-oxo-N'-(1-(pyridin-2-yl)ethylidene)acetohydrazide (0.206 g, 1 mmol) was dissolved in 10 ml of ethanol and the LiOH (0.042 g, 2 mmol) was added with thorough shaking. To the resulting solution, Ni(CH3COO)2.4H2O (0.2489 g, 1 mmol) was added. Immediate change of the colour was observed. The mixture was stirred at room temperature during 2 h. The solution was filtered off and concentrated to tenth. Crystals that separated from the brown solution were filtered off and recrystallized in ethanol. On standing for three weeks, suitable X-rays crystals were obtained. Yield: 73.5%. Anal. Calc. for [C18H18N8O4Ni] (%): C, 46.09; H, 3.87; N, 23.89. Found: C, 46.06; H, 3.85; N, 23.87. Selected IR data (cm-1, KBr pellet): 3214, 1728, 1645, 1585, 1459, 768.
All H atoms were located in difference maps. They were then treated as riding in geometrically idealized positions, with C—H = 0.93 (aryl), or 0.96 Å(CH3) and N—H = 0.86 Å, and with Uiso(H)=kUeq(C,N), where k = 1.5 for the methyl groups, and 1.2 for all other H atoms. Four low-resolution reflections were omitted due to beamstop shading (OMIT instruction in SHELX97-L)). Infinite cylindrical channels of 8 Å diameters ran through the crystal packing along the crystallographic c axis at positions x=0, y=1/2, z and x=1/2, y=0, z accounting for voids of 270 Å3 per
but no solvent contribution to the X-ray diffraction was found.Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999); cell
DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and CRYSTALBUILDER (Welter, 2006); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).[Ni(C9H9N4O2)2] | F(000) = 968 |
Mr = 469.11 | Dx = 1.289 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71070 Å |
Hall symbol: -C 2yc | Cell parameters from 1780 reflections |
a = 16.703 (3) Å | θ = 0.4–23.5° |
b = 17.878 (4) Å | µ = 0.84 mm−1 |
c = 8.929 (2) Å | T = 293 K |
β = 114.915 (5)° | Block, brown |
V = 2418.2 (9) Å3 | 0.21 × 0.14 × 0.13 mm |
Z = 4 |
Nonius KappaCCD diffractometer | 1781 independent reflections |
Radiation source: fine-focus sealed tube, Nonius Kappa CCD | 1285 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.046 |
Detector resolution: 9 pixels mm-1 | θmax = 23.5°, θmin = 2.3° |
phi and ω scans | h = −18→18 |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | k = −18→20 |
Tmin = 0.778, Tmax = 0.897 | l = −9→9 |
6288 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0757P)2] where P = (Fo2 + 2Fc2)/3 |
1777 reflections | (Δ/σ)max < 0.001 |
142 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Ni(C9H9N4O2)2] | V = 2418.2 (9) Å3 |
Mr = 469.11 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.703 (3) Å | µ = 0.84 mm−1 |
b = 17.878 (4) Å | T = 293 K |
c = 8.929 (2) Å | 0.21 × 0.14 × 0.13 mm |
β = 114.915 (5)° |
Nonius KappaCCD diffractometer | 1781 independent reflections |
Absorption correction: multi-scan (SCALEPACK; Otwinowski & Minor, 1997) | 1285 reflections with I > 2σ(I) |
Tmin = 0.778, Tmax = 0.897 | Rint = 0.046 |
6288 measured reflections | θmax = 23.5° |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.137 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.33 e Å−3 |
1777 reflections | Δρmin = −0.30 e Å−3 |
142 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Five low-resolution reflections were omitted due to beamstop shading (OMIT instruction in SHELX97-L). |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.5000 | 0.30602 (4) | 0.2500 | 0.0392 (3) | |
O1 | 0.41866 (19) | 0.38561 (16) | 0.2833 (3) | 0.0451 (8) | |
O2 | 0.3304 (2) | 0.4879 (2) | 0.3757 (4) | 0.0722 (11) | |
N1 | 0.5999 (2) | 0.22513 (19) | 0.3236 (4) | 0.0438 (9) | |
N2 | 0.5383 (2) | 0.30400 (18) | 0.4922 (4) | 0.0368 (8) | |
N3 | 0.4949 (2) | 0.35081 (19) | 0.5577 (4) | 0.0406 (9) | |
N4 | 0.3876 (3) | 0.4413 (2) | 0.6353 (4) | 0.0572 (11) | |
H4A | 0.3576 | 0.4710 | 0.6676 | 0.069* | |
H4B | 0.4232 | 0.4094 | 0.7031 | 0.069* | |
C1 | 0.6314 (3) | 0.1867 (3) | 0.2321 (6) | 0.0567 (13) | |
H1 | 0.6064 | 0.1948 | 0.1187 | 0.068* | |
C2 | 0.6990 (4) | 0.1356 (3) | 0.2970 (7) | 0.0708 (16) | |
H2 | 0.7189 | 0.1097 | 0.2290 | 0.085* | |
C3 | 0.7360 (4) | 0.1241 (3) | 0.4635 (7) | 0.0733 (17) | |
H3 | 0.7822 | 0.0902 | 0.5109 | 0.088* | |
C4 | 0.7050 (3) | 0.1624 (3) | 0.5594 (6) | 0.0631 (14) | |
H4 | 0.7302 | 0.1550 | 0.6731 | 0.076* | |
C5 | 0.6359 (3) | 0.2127 (2) | 0.4885 (5) | 0.0475 (12) | |
C6 | 0.5976 (3) | 0.2576 (2) | 0.5825 (5) | 0.0453 (11) | |
C7 | 0.6273 (4) | 0.2469 (3) | 0.7638 (5) | 0.0713 (17) | |
H7A | 0.5935 | 0.2786 | 0.8020 | 0.107* | |
H7B | 0.6887 | 0.2595 | 0.8202 | 0.107* | |
H7C | 0.6189 | 0.1956 | 0.7856 | 0.107* | |
C8 | 0.4349 (3) | 0.3894 (2) | 0.4339 (5) | 0.0369 (10) | |
C9 | 0.3792 (3) | 0.4445 (3) | 0.4806 (5) | 0.0482 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.0409 (5) | 0.0462 (5) | 0.0311 (5) | 0.000 | 0.0158 (4) | 0.000 |
O1 | 0.0491 (19) | 0.0503 (18) | 0.0330 (16) | 0.0100 (15) | 0.0144 (14) | 0.0013 (14) |
O2 | 0.091 (3) | 0.080 (3) | 0.052 (2) | 0.042 (2) | 0.036 (2) | 0.0173 (19) |
N1 | 0.044 (2) | 0.047 (2) | 0.040 (2) | 0.0055 (18) | 0.0176 (18) | −0.0014 (18) |
N2 | 0.037 (2) | 0.0394 (19) | 0.0332 (19) | 0.0013 (18) | 0.0144 (16) | 0.0023 (17) |
N3 | 0.049 (2) | 0.045 (2) | 0.0321 (19) | 0.0077 (18) | 0.0208 (18) | 0.0014 (17) |
N4 | 0.064 (3) | 0.069 (3) | 0.042 (2) | 0.023 (2) | 0.026 (2) | 0.002 (2) |
C1 | 0.058 (3) | 0.065 (3) | 0.052 (3) | 0.008 (3) | 0.028 (3) | −0.009 (3) |
C2 | 0.069 (4) | 0.075 (4) | 0.065 (4) | 0.019 (3) | 0.025 (3) | −0.019 (3) |
C3 | 0.062 (4) | 0.072 (4) | 0.072 (4) | 0.032 (3) | 0.016 (3) | −0.009 (3) |
C4 | 0.058 (3) | 0.067 (3) | 0.051 (3) | 0.020 (3) | 0.010 (3) | −0.001 (3) |
C5 | 0.045 (3) | 0.051 (3) | 0.043 (3) | 0.004 (2) | 0.015 (2) | −0.001 (2) |
C6 | 0.043 (3) | 0.053 (3) | 0.036 (2) | 0.004 (2) | 0.013 (2) | 0.004 (2) |
C7 | 0.082 (4) | 0.091 (4) | 0.036 (3) | 0.034 (3) | 0.020 (3) | 0.012 (3) |
C8 | 0.041 (3) | 0.039 (2) | 0.031 (2) | −0.001 (2) | 0.016 (2) | −0.001 (2) |
C9 | 0.050 (3) | 0.057 (3) | 0.038 (3) | 0.008 (2) | 0.018 (2) | 0.002 (2) |
Ni1—N2i | 1.980 (3) | N4—H4B | 0.8600 |
Ni1—N2 | 1.980 (3) | C1—C2 | 1.376 (6) |
Ni1—O1i | 2.074 (3) | C1—H1 | 0.9300 |
Ni1—O1 | 2.074 (3) | C2—C3 | 1.364 (7) |
Ni1—N1i | 2.094 (3) | C2—H2 | 0.9300 |
Ni1—N1 | 2.094 (3) | C3—C4 | 1.359 (7) |
O1—C8 | 1.257 (5) | C3—H3 | 0.9300 |
O2—C9 | 1.225 (5) | C4—C5 | 1.388 (6) |
N1—C1 | 1.333 (6) | C4—H4 | 0.9300 |
N1—C5 | 1.354 (5) | C5—C6 | 1.487 (6) |
N2—C6 | 1.283 (5) | C6—C7 | 1.492 (6) |
N2—N3 | 1.387 (5) | C7—H7A | 0.9600 |
N3—C8 | 1.330 (5) | C7—H7B | 0.9600 |
N4—C9 | 1.329 (5) | C7—H7C | 0.9600 |
N4—H4A | 0.8600 | C8—C9 | 1.528 (6) |
N2i—Ni1—N2 | 177.92 (19) | C2—C1—H1 | 118.3 |
N2i—Ni1—O1i | 77.63 (12) | C3—C2—C1 | 118.3 (5) |
N2—Ni1—O1i | 103.84 (12) | C3—C2—H2 | 120.8 |
N2i—Ni1—O1 | 103.84 (12) | C1—C2—H2 | 120.8 |
N2—Ni1—O1 | 77.63 (12) | C4—C3—C2 | 119.5 (5) |
O1i—Ni1—O1 | 93.34 (17) | C4—C3—H3 | 120.3 |
N2i—Ni1—N1i | 78.26 (13) | C2—C3—H3 | 120.3 |
N2—Ni1—N1i | 100.27 (13) | C3—C4—C5 | 120.3 (5) |
O1i—Ni1—N1i | 155.88 (12) | C3—C4—H4 | 119.9 |
O1—Ni1—N1i | 92.02 (13) | C5—C4—H4 | 119.9 |
N2i—Ni1—N1 | 100.27 (13) | N1—C5—C4 | 120.4 (4) |
N2—Ni1—N1 | 78.26 (13) | N1—C5—C6 | 115.2 (4) |
O1i—Ni1—N1 | 92.02 (13) | C4—C5—C6 | 124.4 (4) |
O1—Ni1—N1 | 155.88 (12) | N2—C6—C5 | 113.3 (4) |
N1i—Ni1—N1 | 92.6 (2) | N2—C6—C7 | 125.5 (4) |
C8—O1—Ni1 | 109.4 (2) | C5—C6—C7 | 121.2 (4) |
C1—N1—C5 | 118.2 (4) | C6—C7—H7A | 109.5 |
C1—N1—Ni1 | 129.2 (3) | C6—C7—H7B | 109.5 |
C5—N1—Ni1 | 112.6 (3) | H7A—C7—H7B | 109.5 |
C6—N2—N3 | 121.8 (3) | C6—C7—H7C | 109.5 |
C6—N2—Ni1 | 120.5 (3) | H7A—C7—H7C | 109.5 |
N3—N2—Ni1 | 117.6 (2) | H7B—C7—H7C | 109.5 |
C8—N3—N2 | 107.9 (3) | O1—C8—N3 | 127.4 (4) |
C9—N4—H4A | 120.0 | O1—C8—C9 | 116.4 (4) |
C9—N4—H4B | 120.0 | N3—C8—C9 | 116.2 (3) |
H4A—N4—H4B | 120.0 | O2—C9—N4 | 124.6 (4) |
N1—C1—C2 | 123.4 (5) | O2—C9—C8 | 119.0 (4) |
N1—C1—H1 | 118.3 | N4—C9—C8 | 116.4 (4) |
N2i—Ni1—O1—C8 | 177.3 (3) | Ni1—N1—C1—C2 | 178.8 (4) |
N2—Ni1—O1—C8 | −1.2 (3) | N1—C1—C2—C3 | −0.4 (8) |
O1i—Ni1—O1—C8 | −104.6 (3) | C1—C2—C3—C4 | 0.5 (9) |
N1i—Ni1—O1—C8 | 98.9 (3) | C2—C3—C4—C5 | 0.4 (9) |
N1—Ni1—O1—C8 | −2.1 (5) | C1—N1—C5—C4 | 1.5 (7) |
N2i—Ni1—N1—C1 | 3.4 (4) | Ni1—N1—C5—C4 | −178.0 (4) |
N2—Ni1—N1—C1 | −178.1 (4) | C1—N1—C5—C6 | 179.9 (4) |
O1i—Ni1—N1—C1 | −74.4 (4) | Ni1—N1—C5—C6 | 0.4 (5) |
O1—Ni1—N1—C1 | −177.2 (3) | C3—C4—C5—N1 | −1.4 (8) |
N1i—Ni1—N1—C1 | 81.9 (4) | C3—C4—C5—C6 | −179.6 (5) |
N2i—Ni1—N1—C5 | −177.3 (3) | N3—N2—C6—C5 | 179.9 (3) |
N2—Ni1—N1—C5 | 1.2 (3) | Ni1—N2—C6—C5 | 4.1 (5) |
O1i—Ni1—N1—C5 | 104.9 (3) | N3—N2—C6—C7 | 0.5 (7) |
O1—Ni1—N1—C5 | 2.1 (5) | Ni1—N2—C6—C7 | −175.3 (4) |
N1i—Ni1—N1—C5 | −98.7 (3) | N1—C5—C6—N2 | −2.8 (6) |
O1i—Ni1—N2—C6 | −92.3 (3) | C4—C5—C6—N2 | 175.5 (4) |
O1—Ni1—N2—C6 | 177.3 (3) | N1—C5—C6—C7 | 176.7 (4) |
N1i—Ni1—N2—C6 | 87.5 (3) | C4—C5—C6—C7 | −5.0 (7) |
N1—Ni1—N2—C6 | −3.1 (3) | Ni1—O1—C8—N3 | 1.1 (5) |
O1i—Ni1—N2—N3 | 91.7 (3) | Ni1—O1—C8—C9 | −178.8 (3) |
O1—Ni1—N2—N3 | 1.3 (3) | N2—N3—C8—O1 | −0.1 (6) |
N1i—Ni1—N2—N3 | −88.5 (3) | N2—N3—C8—C9 | 179.8 (3) |
N1—Ni1—N2—N3 | −179.1 (3) | O1—C8—C9—O2 | −8.8 (6) |
C6—N2—N3—C8 | −177.0 (4) | N3—C8—C9—O2 | 171.4 (4) |
Ni1—N2—N3—C8 | −1.1 (4) | O1—C8—C9—N4 | 171.0 (4) |
C5—N1—C1—C2 | −0.6 (7) | N3—C8—C9—N4 | −8.9 (6) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···O2ii | 0.86 | 2.22 | 2.976 (5) | 147 |
N4—H4B···N3iii | 0.86 | 2.25 | 3.074 (5) | 160 |
Symmetry codes: (ii) x, −y+1, z+1/2; (iii) −x+1, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C9H9N4O2)2] |
Mr | 469.11 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 16.703 (3), 17.878 (4), 8.929 (2) |
β (°) | 114.915 (5) |
V (Å3) | 2418.2 (9) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.84 |
Crystal size (mm) | 0.21 × 0.14 × 0.13 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SCALEPACK; Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.778, 0.897 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6288, 1781, 1285 |
Rint | 0.046 |
θmax (°) | 23.5 |
(sin θ/λ)max (Å−1) | 0.561 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.137, 1.04 |
No. of reflections | 1777 |
No. of parameters | 142 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.30 |
Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1999), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and CRYSTALBUILDER (Welter, 2006), PLATON (Spek, 2009), publCIF (Westrip, 2010).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···O2i | 0.86 | 2.22 | 2.976 (5) | 147.2 |
N4—H4B···N3ii | 0.86 | 2.25 | 3.074 (5) | 159.9 |
Symmetry codes: (i) x, −y+1, z+1/2; (ii) −x+1, y, −z+3/2. |
References
Dieng, M., Gaye, M., Sall, A. S. & Welter, R. (2004). Z. Kristallogr. 219, 15–16. CAS Google Scholar
Mikuriya, M., Nakadera, K. & Kotera, T. (1996). Bull. Chem. Soc. Jpn, 69, 399–405. CrossRef CAS Web of Science Google Scholar
Nonius (1999). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tamboura, F. B., Gaye, M., Sall, A. S., Barry, A. H. & Bah, Y. (2009). Acta Cryst. E65, m160–m161. Web of Science CSD CrossRef IUCr Journals Google Scholar
Welter, R. (2006). Acta Cryst. A62, s252. CrossRef IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In the title compound (Fig. 1), the NiII ion is situated on a twofold rotational and adopts a distorted octahedral geometry. The coordination of the hydrazones to Ni center results in the formation of two five-membered chelating rings. In the two rings, the Ni–Npyridyl bond lengths of 2.094 (3) Å are larger than those for Ni–Niminol bonds [1.980 (3) Å]. The Ni–O1 involving the hydrazonic oxygen have the metal-ligand distance of 2.074 (3) Å. The Ni—N and Ni—O bond distances are similar to those observed in other mononuclear NiII complexes with similar tridentate ligands (Dieng et al., 2004; Tamboura et al., 2009). The following bond C6–N2 is not altered in the complex and remains with double bond character. The bond C8–N3 which was simple in character becomes a double bond after deprotonation of the N–H function. The Nimino–Ni–O1 and Npyridyl–Ni–Nimino angles are 78.25 (13)° and 92.04 (13)° respectively. The deviation from 90° of the bond angles involving the chelation observed is presumably due to the formation of five-membered ring (Mikuriya et al., 1996).
In the crystal structure, the intermolecular hydrogen-bonding network involving the acetamide groups and also the N3 atom (Table 1), propagates parallel to the crystallographic c axis (Fig.2). This contributes to display a double inverted X molecular pattern in the ab plane stabilized by π – π stacking interactions between adjacent pyridine rings with the centroid-centroid distance of 3.746 (3) Å.