organic compounds
2-(5-Amino-2H-tetrazol-2-yl)acetic acid
aDepartment of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailing Resources, Shangluo University, Shangluo 726000, Shaanxi, People's Republic of China, and bCollege of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
*Correspondence e-mail: northwindy@126.com
In the title molecule, C3H5N5O2, the tetrazole ring and carboxyl group form a dihedral angle of 82.25 (14)°. In the crystal, adjacent molecules are linked through O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds into layers parallel to the bc plane.
Related literature
For background to tetrazole compounds, see: Zhao et al. (2008). For the use of 5-aminotetrazole-1-acetic acid in coordination chemistry, see: Li et al. (2010); Shen et al. (2011); Yang et al. (2008). For the crystal structures of similar compounds, see: Bryden (1956); Klapötke et al. (2009). For bond-length data, see: Allen et al. (1987).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2008); cell SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812014389/cv5277sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812014389/cv5277Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812014389/cv5277Isup3.cml
The compound was obtained commercially (Aldrich). Colourless crystals suitable for the X-ray diffraction study were obtained by slow evaporation of an ethanol/water (2:1 v/v) solution of the compound (I) at room temperature.
All H atoms were placed in geometrically idealized positions, with C—H = 0.97 Å, N—H = 0.86 Å and O—H = 0.82 Å, and were thereafter treated as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).
Data collection: APEX2 (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I) showing the atom numbering scheme and 30% probability displacement ellipsoids. |
C3H5N5O2 | F(000) = 592 |
Mr = 143.12 | Dx = 1.568 Mg m−3 Dm = 1.568 Mg m−3 Dm measured by not measured |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 734 reflections |
a = 18.381 (4) Å | θ = 3.5–22.2° |
b = 4.4429 (9) Å | µ = 0.13 mm−1 |
c = 14.846 (3) Å | T = 296 K |
β = 90.850 (3)° | Block, colourless |
V = 1212.2 (4) Å3 | 0.28 × 0.19 × 0.15 mm |
Z = 8 |
Bruker APEXII CCD diffractometer | 1193 independent reflections |
Radiation source: fine-focus sealed tube | 890 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −22→22 |
Tmin = 0.970, Tmax = 0.980 | k = −5→4 |
3040 measured reflections | l = −13→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.044 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0657P)2 + 0.3572P] where P = (Fo2 + 2Fc2)/3 |
1193 reflections | (Δ/σ)max = 0.002 |
92 parameters | Δρmax = 0.21 e Å−3 |
0 restraints | Δρmin = −0.19 e Å−3 |
C3H5N5O2 | V = 1212.2 (4) Å3 |
Mr = 143.12 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 18.381 (4) Å | µ = 0.13 mm−1 |
b = 4.4429 (9) Å | T = 296 K |
c = 14.846 (3) Å | 0.28 × 0.19 × 0.15 mm |
β = 90.850 (3)° |
Bruker APEXII CCD diffractometer | 1193 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 890 reflections with I > 2σ(I) |
Tmin = 0.970, Tmax = 0.980 | Rint = 0.024 |
3040 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 0 restraints |
wR(F2) = 0.124 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.21 e Å−3 |
1193 reflections | Δρmin = −0.19 e Å−3 |
92 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O2 | 0.17856 (8) | 0.1746 (3) | 0.30324 (8) | 0.0527 (4) | |
H2 | 0.1626 | 0.2644 | 0.3470 | 0.079* | |
N2 | 0.18104 (10) | 0.4658 (4) | 0.01590 (11) | 0.0493 (5) | |
N3 | 0.15090 (8) | 0.2586 (4) | 0.06465 (10) | 0.0414 (4) | |
C3 | 0.14844 (11) | 0.2824 (5) | 0.22938 (12) | 0.0426 (5) | |
N4 | 0.08911 (9) | 0.1468 (4) | 0.03036 (11) | 0.0485 (5) | |
N1 | 0.13778 (10) | 0.4994 (4) | −0.05556 (11) | 0.0500 (5) | |
C2 | 0.18346 (11) | 0.1507 (5) | 0.14771 (12) | 0.0449 (5) | |
H2A | 0.2348 | 0.2010 | 0.1487 | 0.054* | |
H2B | 0.1793 | −0.0668 | 0.1499 | 0.054* | |
O1 | 0.10122 (10) | 0.4680 (4) | 0.22631 (10) | 0.0752 (6) | |
C1 | 0.08229 (11) | 0.3035 (5) | −0.04569 (13) | 0.0479 (5) | |
N5 | 0.02757 (11) | 0.2722 (6) | −0.10567 (13) | 0.0787 (8) | |
H5A | −0.0064 | 0.1434 | −0.0962 | 0.094* | |
H5B | 0.0264 | 0.3809 | −0.1536 | 0.094* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O2 | 0.0661 (10) | 0.0609 (10) | 0.0308 (8) | 0.0097 (8) | −0.0064 (6) | −0.0009 (6) |
N2 | 0.0611 (10) | 0.0547 (11) | 0.0320 (9) | −0.0062 (9) | −0.0015 (7) | 0.0015 (7) |
N3 | 0.0464 (9) | 0.0479 (10) | 0.0300 (8) | 0.0011 (7) | 0.0009 (7) | −0.0019 (7) |
C3 | 0.0479 (11) | 0.0467 (12) | 0.0329 (10) | 0.0005 (10) | −0.0036 (8) | −0.0002 (8) |
N4 | 0.0490 (9) | 0.0622 (11) | 0.0341 (9) | −0.0039 (8) | −0.0029 (7) | 0.0042 (8) |
N1 | 0.0604 (11) | 0.0588 (12) | 0.0309 (9) | −0.0029 (9) | −0.0027 (7) | 0.0027 (7) |
C2 | 0.0506 (11) | 0.0502 (12) | 0.0337 (10) | 0.0068 (10) | −0.0047 (8) | 0.0013 (8) |
O1 | 0.0878 (12) | 0.0979 (14) | 0.0398 (9) | 0.0459 (11) | −0.0038 (8) | −0.0048 (8) |
C1 | 0.0483 (11) | 0.0651 (14) | 0.0303 (10) | 0.0030 (10) | 0.0015 (8) | 0.0015 (9) |
N5 | 0.0607 (12) | 0.125 (2) | 0.0503 (12) | −0.0216 (12) | −0.0165 (9) | 0.0320 (12) |
O2—C3 | 1.312 (2) | N4—C1 | 1.331 (3) |
O2—H2 | 0.8200 | N1—C1 | 1.351 (3) |
N2—N3 | 1.300 (2) | C2—H2A | 0.9700 |
N2—N1 | 1.325 (2) | C2—H2B | 0.9700 |
N3—N4 | 1.334 (2) | C1—N5 | 1.341 (2) |
N3—C2 | 1.444 (2) | N5—H5A | 0.8600 |
C3—O1 | 1.198 (2) | N5—H5B | 0.8600 |
C3—C2 | 1.500 (3) | ||
C3—O2—H2 | 109.5 | N3—C2—H2A | 109.1 |
N3—N2—N1 | 105.66 (16) | C3—C2—H2A | 109.1 |
N2—N3—N4 | 114.75 (16) | N3—C2—H2B | 109.1 |
N2—N3—C2 | 122.39 (16) | C3—C2—H2B | 109.1 |
N4—N3—C2 | 122.81 (17) | H2A—C2—H2B | 107.8 |
O1—C3—O2 | 125.45 (18) | N4—C1—N5 | 124.7 (2) |
O1—C3—C2 | 123.87 (18) | N4—C1—N1 | 111.56 (17) |
O2—C3—C2 | 110.64 (17) | N5—C1—N1 | 123.72 (19) |
C1—N4—N3 | 101.42 (17) | C1—N5—H5A | 120.0 |
N2—N1—C1 | 106.60 (16) | C1—N5—H5B | 120.0 |
N3—C2—C3 | 112.53 (16) | H5A—N5—H5B | 120.0 |
N1—N2—N3—N4 | 0.2 (2) | O1—C3—C2—N3 | −3.6 (3) |
N1—N2—N3—C2 | 177.93 (17) | O2—C3—C2—N3 | 178.80 (17) |
N2—N3—N4—C1 | −0.1 (2) | N3—N4—C1—N5 | 179.7 (2) |
C2—N3—N4—C1 | −177.82 (17) | N3—N4—C1—N1 | 0.0 (2) |
N3—N2—N1—C1 | −0.2 (2) | N2—N1—C1—N4 | 0.2 (2) |
N2—N3—C2—C3 | 101.8 (2) | N2—N1—C1—N5 | −179.6 (2) |
N4—N3—C2—C3 | −80.6 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5B···O1i | 0.86 | 2.36 | 3.080 (3) | 141 |
N5—H5A···N4ii | 0.86 | 2.23 | 3.064 (3) | 163 |
O2—H2···N1iii | 0.82 | 1.85 | 2.665 (2) | 172 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x, −y, −z; (iii) x, −y+1, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C3H5N5O2 |
Mr | 143.12 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 296 |
a, b, c (Å) | 18.381 (4), 4.4429 (9), 14.846 (3) |
β (°) | 90.850 (3) |
V (Å3) | 1212.2 (4) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.13 |
Crystal size (mm) | 0.28 × 0.19 × 0.15 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.970, 0.980 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3040, 1193, 890 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.124, 1.03 |
No. of reflections | 1193 |
No. of parameters | 92 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.21, −0.19 |
Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5B···O1i | 0.86 | 2.36 | 3.080 (3) | 140.9 |
N5—H5A···N4ii | 0.86 | 2.23 | 3.064 (3) | 163.2 |
O2—H2···N1iii | 0.82 | 1.85 | 2.665 (2) | 172.2 |
Symmetry codes: (i) x, −y+1, z−1/2; (ii) −x, −y, −z; (iii) x, −y+1, z+1/2. |
Acknowledgements
The authors gratefully acknowledge financial support from the National Science Foundation of China (grant No. 21173168) and the Science Research Plan Projects of Shaanxi Provincial Educational Department (grant No. 11 J K0578).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bryden, J. H. (1956). Acta Cryst. 9, 874–878. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Klapötke, T. M., Sabaté, C. M., Penger, A., Rusan, M. & Welch, J. M. (2009). Eur. J. Inorg. Chem. pp. 880–896. Google Scholar
Li, Q. Y., Yang, G. W., Tang, X. Y., Ma, Y. S., Yao, W., Zhou, F., Chen, J. & Zhou, H. (2010). Cryst. Growth Des. 10, 165–170. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shen, L., Yang, J., Ma, Y. S., Tang, X. Y., Yang, G. W., Li, Q. Y., Zhou, F., Miao, Z. F., Fei, X. W. & Huang, J. W. (2011). J. Coord. Chem. 64, 431–439. Web of Science CSD CrossRef CAS Google Scholar
Yang, G. W., Li, Q. Y., Zhou, Y., Gu, G. Q., Ma, Y. S. & Yuan, R. X. (2008). Inorg. Chem. Commun. 11, 1239–1242. Web of Science CSD CrossRef CAS Google Scholar
Zhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84–100. Web of Science CrossRef PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, numerous tetrazole ligands were used to construct coordination compounds, which have been the subject of an intense research effort owing to their unique structures and potential applications in advanced materials (Zhao et al., 2008). However, the study of coordination compounds with disubstituted tetrazole ligands is comparatively scarce. Recently, Li et al. (2010) reported a series of lanthanide-based compounds with 5-aminotetrazole-1-acetic acid, which possesses intriguing topological structures and predominant optics performance. Inspired by this interesting work, we report here the crystal structure of a 2,5-disubstituted tetrazole compound, (5-Amino-2H-tetrazole-2-yl)acetic acid, (I).
As shown in Fig. 1, the tetrazole ring (C1/N1—N4) is essentially planar with an r.m.s. deviation of 0.008 °. The carboxyl group (O1/C3/O2) and tetrazole ring are inclined at a dihedral angle of 82.25 (14) °. All bond lengths and angles are in the normal ranges (Allen et al., 1987). The torsion angles N4–N3–C2–C3 = -80.6 (2) °, N2–N3–C2–C3 = 101.8 (2) °, O1–C3–C2–N3 = -3.6 (3) °, O2–C3–C2–N3 = 178.80 (17) °. In the crystal structure, intermolecular O—H···N, N—H···O and N—H···N hydrogen bonds (Table 1) link the molecules into a two-dimensional framework parallel to the bc plane.