organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1330

2-(5-Amino-2H-tetra­zol-2-yl)acetic acid

aDepartment of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Comprehensive Utilization of Tailing Resources, Shangluo University, Shangluo 726000, Shaanxi, People's Republic of China, and bCollege of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China
*Correspondence e-mail: northwindy@126.com

(Received 30 March 2012; accepted 3 April 2012; online 6 April 2012)

In the title mol­ecule, C3H5N5O2, the tetra­zole ring and carboxyl group form a dihedral angle of 82.25 (14)°. In the crystal, adjacent mol­ecules are linked through O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds into layers parallel to the bc plane.

Related literature

For background to tetra­zole compounds, see: Zhao et al. (2008[Zhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84-100.]). For the use of 5-amino­tetra­zole-1-acetic acid in coord­ination chemistry, see: Li et al. (2010[Li, Q. Y., Yang, G. W., Tang, X. Y., Ma, Y. S., Yao, W., Zhou, F., Chen, J. & Zhou, H. (2010). Cryst. Growth Des. 10, 165-170.]); Shen et al. (2011[Shen, L., Yang, J., Ma, Y. S., Tang, X. Y., Yang, G. W., Li, Q. Y., Zhou, F., Miao, Z. F., Fei, X. W. & Huang, J. W. (2011). J. Coord. Chem. 64, 431-439.]); Yang et al. (2008[Yang, G. W., Li, Q. Y., Zhou, Y., Gu, G. Q., Ma, Y. S. & Yuan, R. X. (2008). Inorg. Chem. Commun. 11, 1239-1242.]). For the crystal structures of similar compounds, see: Bryden (1956[Bryden, J. H. (1956). Acta Cryst. 9, 874-878.]); Klapötke et al. (2009[Klapötke, T. M., Sabaté, C. M., Penger, A., Rusan, M. & Welch, J. M. (2009). Eur. J. Inorg. Chem. pp. 880-896.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C3H5N5O2

  • Mr = 143.12

  • Monoclinic, C 2/c

  • a = 18.381 (4) Å

  • b = 4.4429 (9) Å

  • c = 14.846 (3) Å

  • β = 90.850 (3)°

  • V = 1212.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.28 × 0.19 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.980

  • 3040 measured reflections

  • 1193 independent reflections

  • 890 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.124

  • S = 1.03

  • 1193 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5B⋯O1i 0.86 2.36 3.080 (3) 141
N5—H5A⋯N4ii 0.86 2.23 3.064 (3) 163
O2—H2⋯N1iii 0.82 1.85 2.665 (2) 172
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) -x, -y, -z; (iii) [x, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In recent years, numerous tetrazole ligands were used to construct coordination compounds, which have been the subject of an intense research effort owing to their unique structures and potential applications in advanced materials (Zhao et al., 2008). However, the study of coordination compounds with disubstituted tetrazole ligands is comparatively scarce. Recently, Li et al. (2010) reported a series of lanthanide-based compounds with 5-aminotetrazole-1-acetic acid, which possesses intriguing topological structures and predominant optics performance. Inspired by this interesting work, we report here the crystal structure of a 2,5-disubstituted tetrazole compound, (5-Amino-2H-tetrazole-2-yl)acetic acid, (I).

As shown in Fig. 1, the tetrazole ring (C1/N1—N4) is essentially planar with an r.m.s. deviation of 0.008 °. The carboxyl group (O1/C3/O2) and tetrazole ring are inclined at a dihedral angle of 82.25 (14) °. All bond lengths and angles are in the normal ranges (Allen et al., 1987). The torsion angles N4–N3–C2–C3 = -80.6 (2) °, N2–N3–C2–C3 = 101.8 (2) °, O1–C3–C2–N3 = -3.6 (3) °, O2–C3–C2–N3 = 178.80 (17) °. In the crystal structure, intermolecular O—H···N, N—H···O and N—H···N hydrogen bonds (Table 1) link the molecules into a two-dimensional framework parallel to the bc plane.

Related literature top

For background to tetrazole compounds, see: Zhao et al. (2008). For the use of 5-aminotetrazole-1-acetic acid in coordination chemistry, see: Li et al. (2010); Shen et al. (2011); Yang et al. (2008). For the crystal structures of similar compounds, see: Bryden (1956); Klapötke et al. (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The compound was obtained commercially (Aldrich). Colourless crystals suitable for the X-ray diffraction study were obtained by slow evaporation of an ethanol/water (2:1 v/v) solution of the compound (I) at room temperature.

Refinement top

All H atoms were placed in geometrically idealized positions, with C—H = 0.97 Å, N—H = 0.86 Å and O—H = 0.82 Å, and were thereafter treated as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom numbering scheme and 30% probability displacement ellipsoids.
2-(5-Amino-2H-tetrazol-2-yl)acetic acid top
Crystal data top
C3H5N5O2F(000) = 592
Mr = 143.12Dx = 1.568 Mg m3
Dm = 1.568 Mg m3
Dm measured by not measured
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 734 reflections
a = 18.381 (4) Åθ = 3.5–22.2°
b = 4.4429 (9) ŵ = 0.13 mm1
c = 14.846 (3) ÅT = 296 K
β = 90.850 (3)°Block, colourless
V = 1212.2 (4) Å30.28 × 0.19 × 0.15 mm
Z = 8
Data collection top
Bruker APEXII CCD
diffractometer
1193 independent reflections
Radiation source: fine-focus sealed tube890 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 2222
Tmin = 0.970, Tmax = 0.980k = 54
3040 measured reflectionsl = 1318
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.3572P]
where P = (Fo2 + 2Fc2)/3
1193 reflections(Δ/σ)max = 0.002
92 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C3H5N5O2V = 1212.2 (4) Å3
Mr = 143.12Z = 8
Monoclinic, C2/cMo Kα radiation
a = 18.381 (4) ŵ = 0.13 mm1
b = 4.4429 (9) ÅT = 296 K
c = 14.846 (3) Å0.28 × 0.19 × 0.15 mm
β = 90.850 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1193 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
890 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.980Rint = 0.024
3040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.03Δρmax = 0.21 e Å3
1193 reflectionsΔρmin = 0.19 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.17856 (8)0.1746 (3)0.30324 (8)0.0527 (4)
H20.16260.26440.34700.079*
N20.18104 (10)0.4658 (4)0.01590 (11)0.0493 (5)
N30.15090 (8)0.2586 (4)0.06465 (10)0.0414 (4)
C30.14844 (11)0.2824 (5)0.22938 (12)0.0426 (5)
N40.08911 (9)0.1468 (4)0.03036 (11)0.0485 (5)
N10.13778 (10)0.4994 (4)0.05556 (11)0.0500 (5)
C20.18346 (11)0.1507 (5)0.14771 (12)0.0449 (5)
H2A0.23480.20100.14870.054*
H2B0.17930.06680.14990.054*
O10.10122 (10)0.4680 (4)0.22631 (10)0.0752 (6)
C10.08229 (11)0.3035 (5)0.04569 (13)0.0479 (5)
N50.02757 (11)0.2722 (6)0.10567 (13)0.0787 (8)
H5A0.00640.14340.09620.094*
H5B0.02640.38090.15360.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0661 (10)0.0609 (10)0.0308 (8)0.0097 (8)0.0064 (6)0.0009 (6)
N20.0611 (10)0.0547 (11)0.0320 (9)0.0062 (9)0.0015 (7)0.0015 (7)
N30.0464 (9)0.0479 (10)0.0300 (8)0.0011 (7)0.0009 (7)0.0019 (7)
C30.0479 (11)0.0467 (12)0.0329 (10)0.0005 (10)0.0036 (8)0.0002 (8)
N40.0490 (9)0.0622 (11)0.0341 (9)0.0039 (8)0.0029 (7)0.0042 (8)
N10.0604 (11)0.0588 (12)0.0309 (9)0.0029 (9)0.0027 (7)0.0027 (7)
C20.0506 (11)0.0502 (12)0.0337 (10)0.0068 (10)0.0047 (8)0.0013 (8)
O10.0878 (12)0.0979 (14)0.0398 (9)0.0459 (11)0.0038 (8)0.0048 (8)
C10.0483 (11)0.0651 (14)0.0303 (10)0.0030 (10)0.0015 (8)0.0015 (9)
N50.0607 (12)0.125 (2)0.0503 (12)0.0216 (12)0.0165 (9)0.0320 (12)
Geometric parameters (Å, º) top
O2—C31.312 (2)N4—C11.331 (3)
O2—H20.8200N1—C11.351 (3)
N2—N31.300 (2)C2—H2A0.9700
N2—N11.325 (2)C2—H2B0.9700
N3—N41.334 (2)C1—N51.341 (2)
N3—C21.444 (2)N5—H5A0.8600
C3—O11.198 (2)N5—H5B0.8600
C3—C21.500 (3)
C3—O2—H2109.5N3—C2—H2A109.1
N3—N2—N1105.66 (16)C3—C2—H2A109.1
N2—N3—N4114.75 (16)N3—C2—H2B109.1
N2—N3—C2122.39 (16)C3—C2—H2B109.1
N4—N3—C2122.81 (17)H2A—C2—H2B107.8
O1—C3—O2125.45 (18)N4—C1—N5124.7 (2)
O1—C3—C2123.87 (18)N4—C1—N1111.56 (17)
O2—C3—C2110.64 (17)N5—C1—N1123.72 (19)
C1—N4—N3101.42 (17)C1—N5—H5A120.0
N2—N1—C1106.60 (16)C1—N5—H5B120.0
N3—C2—C3112.53 (16)H5A—N5—H5B120.0
N1—N2—N3—N40.2 (2)O1—C3—C2—N33.6 (3)
N1—N2—N3—C2177.93 (17)O2—C3—C2—N3178.80 (17)
N2—N3—N4—C10.1 (2)N3—N4—C1—N5179.7 (2)
C2—N3—N4—C1177.82 (17)N3—N4—C1—N10.0 (2)
N3—N2—N1—C10.2 (2)N2—N1—C1—N40.2 (2)
N2—N3—C2—C3101.8 (2)N2—N1—C1—N5179.6 (2)
N4—N3—C2—C380.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···O1i0.862.363.080 (3)141
N5—H5A···N4ii0.862.233.064 (3)163
O2—H2···N1iii0.821.852.665 (2)172
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z; (iii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC3H5N5O2
Mr143.12
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)18.381 (4), 4.4429 (9), 14.846 (3)
β (°) 90.850 (3)
V3)1212.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.28 × 0.19 × 0.15
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.970, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
3040, 1193, 890
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.03
No. of reflections1193
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···O1i0.862.363.080 (3)140.9
N5—H5A···N4ii0.862.233.064 (3)163.2
O2—H2···N1iii0.821.852.665 (2)172.2
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z; (iii) x, y+1, z+1/2.
 

Acknowledgements

The authors gratefully acknowledge financial support from the National Science Foundation of China (grant No. 21173168) and the Science Research Plan Projects of Shaanxi Provincial Educational Department (grant No. 11 J K0578).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBryden, J. H. (1956). Acta Cryst. 9, 874–878.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKlapötke, T. M., Sabaté, C. M., Penger, A., Rusan, M. & Welch, J. M. (2009). Eur. J. Inorg. Chem. pp. 880–896.  Google Scholar
First citationLi, Q. Y., Yang, G. W., Tang, X. Y., Ma, Y. S., Yao, W., Zhou, F., Chen, J. & Zhou, H. (2010). Cryst. Growth Des. 10, 165–170.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, L., Yang, J., Ma, Y. S., Tang, X. Y., Yang, G. W., Li, Q. Y., Zhou, F., Miao, Z. F., Fei, X. W. & Huang, J. W. (2011). J. Coord. Chem. 64, 431–439.  Web of Science CSD CrossRef CAS Google Scholar
First citationYang, G. W., Li, Q. Y., Zhou, Y., Gu, G. Q., Ma, Y. S. & Yuan, R. X. (2008). Inorg. Chem. Commun. 11, 1239–1242.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhao, H., Qu, Z. R., Ye, H. Y. & Xiong, R. G. (2008). Chem. Soc. Rev. 37, 84–100.  Web of Science CrossRef PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1330
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds