metal-organic compounds
Bis(2-methylpiperidinium) pentachloridoantimonate(III)
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: xqchem@yahoo.com.cn
The 6H14N)2[SbCl5], contains one cation and half of the anion on a special position (specifically, the SbIII ion and three chloride anions are situated on a mirror plane). In the [SbCl5]2− unit, the SbIII ion is coordinated by five chloride anions [Sb—Cl = 2.3721 (11)–2.6656 (12) Å] in a distorted square-pyramidal geometry. However, one chloride anion from a neighbouring [SbCl5]2− unit provides a short Sb⋯Cl contact of 3.3600 (12) Å and completes the Sb coordination environment up to an elongated octahedron. In the crystal, N—H⋯Cl hydrogen bonds link cations and anions into columns propagating along [100].
of the title compound, (CRelated literature
For the ). For background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).
of bis(4-benzylpiperidinium) pentachloridoantimonate(III), see: Marsh (1995Experimental
Crystal data
|
Refinement
|
Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell SCXmini Benchtop Crystallography System Software; data reduction: SCXmini Benchtop Crystallography System Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812017163/cv5279sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812017163/cv5279Isup2.hkl
The mixture of SbCl3(1.1 g, 5 mmol) and 2-methypiperidine (1.05 g, 10 mmol) in hydrochloric acid solution was stirred for several minutes at room temperature. Colourless crystals suitable for X-ray
were obtained by slow evaporation of the solution at room temperature over 2 weeks.All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93–0.98 Å and N—H = 0.90 Å, and with Uiso(H) = 1.2–1.5 Uiso(C, N).
Data collection: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); cell
SCXmini Benchtop Crystallography System Software (Rigaku, 2006); data reduction: SCXmini Benchtop Crystallography System Software (Rigaku, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).(C6H14N)2[SbCl5] | F(000) = 1000 |
Mr = 499.36 | Dx = 1.645 Mg m−3 |
Orthorhombic, Pnma | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2n | Cell parameters from 2361 reflections |
a = 7.5995 (15) Å | θ = 2.2–27.5° |
b = 23.165 (5) Å | µ = 2.03 mm−1 |
c = 11.453 (2) Å | T = 293 K |
V = 2016.2 (7) Å3 | Block, colourless |
Z = 4 | 0.28 × 0.25 × 0.21 mm |
Rigaku Mercury70 CCD diffractometer | 2361 independent reflections |
Radiation source: fine-focus sealed tube | 1938 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.061 |
ω scans | θmax = 27.5°, θmin = 3.2° |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | h = −9→9 |
Tmin = 0.421, Tmax = 0.558 | k = −30→30 |
19754 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0181P)2 + 1.8699P] where P = (Fo2 + 2Fc2)/3 |
2361 reflections | (Δ/σ)max = 0.001 |
98 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.52 e Å−3 |
(C6H14N)2[SbCl5] | V = 2016.2 (7) Å3 |
Mr = 499.36 | Z = 4 |
Orthorhombic, Pnma | Mo Kα radiation |
a = 7.5995 (15) Å | µ = 2.03 mm−1 |
b = 23.165 (5) Å | T = 293 K |
c = 11.453 (2) Å | 0.28 × 0.25 × 0.21 mm |
Rigaku Mercury70 CCD diffractometer | 2361 independent reflections |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | 1938 reflections with I > 2σ(I) |
Tmin = 0.421, Tmax = 0.558 | Rint = 0.061 |
19754 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.065 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.58 e Å−3 |
2361 reflections | Δρmin = −0.52 e Å−3 |
98 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.8199 (5) | 0.1245 (2) | −0.1957 (3) | 0.0703 (12) | |
H1A | 0.7817 | 0.1631 | −0.2129 | 0.105* | |
H1B | 0.7841 | 0.0991 | −0.2575 | 0.105* | |
H1C | 0.9457 | 0.1238 | −0.1887 | 0.105* | |
C2 | 0.7387 (5) | 0.10494 (17) | −0.0830 (3) | 0.0554 (10) | |
H2 | 0.6106 | 0.1081 | −0.0900 | 0.066* | |
C3 | 0.7834 (6) | 0.04338 (18) | −0.0511 (4) | 0.0750 (13) | |
H3A | 0.7347 | 0.0177 | −0.1098 | 0.090* | |
H3B | 0.9103 | 0.0388 | −0.0519 | 0.090* | |
C4 | 0.7143 (7) | 0.0260 (2) | 0.0672 (4) | 0.0866 (15) | |
H4A | 0.7536 | −0.0128 | 0.0855 | 0.104* | |
H4B | 0.5866 | 0.0259 | 0.0659 | 0.104* | |
C5 | 0.7785 (6) | 0.06724 (18) | 0.1599 (4) | 0.0707 (12) | |
H5A | 0.7284 | 0.0566 | 0.2348 | 0.085* | |
H5B | 0.9055 | 0.0647 | 0.1661 | 0.085* | |
C6 | 0.7275 (5) | 0.12723 (16) | 0.1310 (3) | 0.0552 (10) | |
H6A | 0.7741 | 0.1534 | 0.1895 | 0.066* | |
H6B | 0.6002 | 0.1306 | 0.1314 | 0.066* | |
N1 | 0.7977 (4) | 0.14369 (12) | 0.0122 (3) | 0.0499 (7) | |
H1D | 0.7632 | 0.1799 | −0.0044 | 0.060* | |
H1E | 0.9160 | 0.1435 | 0.0147 | 0.060* | |
Cl1 | 0.73805 (11) | 0.13613 (4) | 0.45405 (8) | 0.0508 (2) | |
Cl2 | 0.58634 (15) | 0.2500 | 0.61136 (10) | 0.0463 (3) | |
Cl3 | 1.05345 (15) | 0.2500 | 0.57047 (11) | 0.0489 (3) | |
Cl4 | 0.48085 (16) | 0.2500 | 0.31467 (11) | 0.0529 (3) | |
Sb1 | 0.76256 (3) | 0.2500 | 0.44041 (2) | 0.03097 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.070 (3) | 0.095 (3) | 0.046 (2) | −0.005 (2) | −0.001 (2) | −0.007 (2) |
C2 | 0.047 (2) | 0.065 (2) | 0.054 (2) | 0.0012 (18) | −0.0107 (18) | −0.0133 (18) |
C3 | 0.090 (3) | 0.048 (2) | 0.088 (3) | −0.004 (2) | 0.006 (3) | −0.017 (2) |
C4 | 0.111 (4) | 0.051 (3) | 0.098 (4) | −0.014 (3) | 0.008 (3) | −0.005 (3) |
C5 | 0.077 (3) | 0.071 (3) | 0.064 (3) | −0.007 (2) | −0.003 (2) | 0.012 (2) |
C6 | 0.065 (2) | 0.051 (2) | 0.050 (2) | −0.0070 (19) | 0.0054 (19) | −0.0070 (17) |
N1 | 0.0522 (17) | 0.0429 (17) | 0.0547 (18) | 0.0026 (14) | −0.0054 (15) | −0.0050 (14) |
Cl1 | 0.0496 (5) | 0.0453 (5) | 0.0576 (5) | 0.0051 (4) | 0.0006 (4) | −0.0039 (4) |
Cl2 | 0.0521 (7) | 0.0532 (7) | 0.0336 (6) | 0.000 | 0.0144 (5) | 0.000 |
Cl3 | 0.0438 (6) | 0.0535 (7) | 0.0493 (7) | 0.000 | −0.0117 (6) | 0.000 |
Cl4 | 0.0481 (7) | 0.0584 (8) | 0.0523 (7) | 0.000 | −0.0189 (6) | 0.000 |
Sb1 | 0.02942 (15) | 0.03721 (16) | 0.02627 (14) | 0.000 | 0.00072 (12) | 0.000 |
C1—C2 | 1.500 (5) | C5—C6 | 1.480 (5) |
C1—H1A | 0.9600 | C5—H5A | 0.9700 |
C1—H1B | 0.9600 | C5—H5B | 0.9700 |
C1—H1C | 0.9600 | C6—N1 | 1.511 (5) |
C2—N1 | 1.481 (4) | C6—H6A | 0.9700 |
C2—C3 | 1.511 (6) | C6—H6B | 0.9700 |
C2—H2 | 0.9800 | N1—H1D | 0.9000 |
C3—C4 | 1.509 (6) | N1—H1E | 0.9000 |
C3—H3A | 0.9700 | Cl1—Sb1 | 2.6491 (10) |
C3—H3B | 0.9700 | Cl2—Sb1 | 2.3721 (11) |
C4—C5 | 1.510 (6) | Cl3—Sb1 | 2.6656 (12) |
C4—H4A | 0.9700 | Cl4—Sb1 | 2.5802 (12) |
C4—H4B | 0.9700 | Sb1—Cl1i | 2.6491 (10) |
C2—C1—H1A | 109.5 | C4—C5—H5A | 109.5 |
C2—C1—H1B | 109.5 | C6—C5—H5B | 109.5 |
H1A—C1—H1B | 109.5 | C4—C5—H5B | 109.5 |
C2—C1—H1C | 109.5 | H5A—C5—H5B | 108.1 |
H1A—C1—H1C | 109.5 | C5—C6—N1 | 110.3 (3) |
H1B—C1—H1C | 109.5 | C5—C6—H6A | 109.6 |
N1—C2—C1 | 109.0 (3) | N1—C6—H6A | 109.6 |
N1—C2—C3 | 109.0 (3) | C5—C6—H6B | 109.6 |
C1—C2—C3 | 113.6 (3) | N1—C6—H6B | 109.6 |
N1—C2—H2 | 108.4 | H6A—C6—H6B | 108.1 |
C1—C2—H2 | 108.4 | C2—N1—C6 | 113.8 (3) |
C3—C2—H2 | 108.4 | C2—N1—H1D | 108.8 |
C4—C3—C2 | 113.0 (4) | C6—N1—H1D | 108.8 |
C4—C3—H3A | 109.0 | C2—N1—H1E | 108.8 |
C2—C3—H3A | 109.0 | C6—N1—H1E | 108.8 |
C4—C3—H3B | 109.0 | H1D—N1—H1E | 107.7 |
C2—C3—H3B | 109.0 | Cl2—Sb1—Cl4 | 89.56 (5) |
H3A—C3—H3B | 107.8 | Cl2—Sb1—Cl1 | 84.93 (2) |
C3—C4—C5 | 110.5 (4) | Cl4—Sb1—Cl1 | 88.54 (2) |
C3—C4—H4A | 109.6 | Cl2—Sb1—Cl1i | 84.93 (2) |
C5—C4—H4A | 109.6 | Cl4—Sb1—Cl1i | 88.542 (19) |
C3—C4—H4B | 109.6 | Cl1—Sb1—Cl1i | 169.47 (4) |
C5—C4—H4B | 109.6 | Cl2—Sb1—Cl3 | 90.40 (4) |
H4A—C4—H4B | 108.1 | Cl4—Sb1—Cl3 | 179.96 (4) |
C6—C5—C4 | 110.6 (4) | Cl1—Sb1—Cl3 | 91.454 (19) |
C6—C5—H5A | 109.5 | Cl1i—Sb1—Cl3 | 91.454 (19) |
N1—C2—C3—C4 | 53.2 (5) | C4—C5—C6—N1 | −56.7 (5) |
C1—C2—C3—C4 | 175.0 (4) | C1—C2—N1—C6 | −178.6 (3) |
C2—C3—C4—C5 | −55.2 (6) | C3—C2—N1—C6 | −54.0 (4) |
C3—C4—C5—C6 | 56.5 (5) | C5—C6—N1—C2 | 57.2 (4) |
Symmetry code: (i) x, −y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1D···Cl3ii | 0.90 | 2.40 | 3.226 (3) | 153 |
N1—H1E···Cl1iii | 0.90 | 2.48 | 3.373 (3) | 173 |
Symmetry codes: (ii) x−1/2, y, −z+1/2; (iii) x+1/2, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | (C6H14N)2[SbCl5] |
Mr | 499.36 |
Crystal system, space group | Orthorhombic, Pnma |
Temperature (K) | 293 |
a, b, c (Å) | 7.5995 (15), 23.165 (5), 11.453 (2) |
V (Å3) | 2016.2 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 2.03 |
Crystal size (mm) | 0.28 × 0.25 × 0.21 |
Data collection | |
Diffractometer | Rigaku Mercury70 CCD diffractometer |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.421, 0.558 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19754, 2361, 1938 |
Rint | 0.061 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.065, 1.08 |
No. of reflections | 2361 |
No. of parameters | 98 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.58, −0.52 |
Computer programs: SCXmini Benchtop Crystallography System Software (Rigaku, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1D···Cl3i | 0.90 | 2.40 | 3.226 (3) | 153.1 |
N1—H1E···Cl1ii | 0.90 | 2.48 | 3.373 (3) | 172.6 |
Symmetry codes: (i) x−1/2, y, −z+1/2; (ii) x+1/2, y, −z+1/2. |
Acknowledgements
This work was supported by Southeast University.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997. Web of Science CSD CrossRef CAS Google Scholar
Marsh, R. E. (1995). Acta Cryst. B51, 897–907. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2006). SCXmini Benchtop Crystallography System Software. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As a contribution to a search for new ferroelectric materials (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010), we have synthesized the title compound, (I). Herewith we present its crystal structure.
The asymmetric unit of (I), 2(C6H14N)+[SbCl5]2-, contains one cation and one-half of the anion in a special position (Fig. 1). The Sb1 atoms coordinated in a slightly distorted square-pyramidal geometry by five Cl atoms and distance of the top Cl2 and Sb1 is 2.3721 (11) Å much shorter than the mean values of other Sb—Cl[2.636 (11) Å]. The bond angles around the Sb1 are in the range 84.93 (2)–91.454 (19)° and correspond to those observed in the related compound 2(C12H18N)+[SbCl5]2- (Marsh, 1995).
In the crystal structure, intermolecular N—H···Cl hydrogen bonds (Table 1) link cations and anions into columns propagated in [100] (Fig. 2). In the title compound, no dielectric anomalies were observed in the range from 190 K to its melting point, which is more than 357 K.