organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1386-o1387

Di­methyl 2-[23-oxo-22,24-di­phenyl-8,11,14-trioxa-25-aza­tetra­cyclo­[19.3.1.02,7.015,20]penta­cosa-2,4,6,15(20),16,18-hexaen-25-yl]but-2-enedioate

aDepartment of Chemistry, Vietnam National University, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam, bOrganic Chemistry Department, Russian Peoples Friendship University, Miklukho-Maklaya St 6, Moscow 117198, Russian Federation, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: vkh@xray.ineos.ac.ru

(Received 3 April 2012; accepted 6 April 2012; online 13 April 2012)

The title compound, C39H37NO8, is a product of the Michael addition of the cyclic secondary amine subunit of aza-14-crown-4 ether to dimethyl acetyl­enedicarboxyl­ate. The piperidinone ring exhibits a distorted chair conformation and the dimethyl acetyl­enedicarboxyl­ate fragment has a cis configuration with a dihedral angle of 56.61 (5)° between the two carboxyl­ate groups. The crystal packing is stabilized by the weak C—H⋯O hydrogen bonds.

Related literature

For general background to the design, synthesis, chemical properties and applications of macrocyclic ligands in coordination chemistry, see: Hiraoka (1978[Hiraoka, M. (1978). In Crown Compounds: Their Characteristics and Application. Tokyo: Kodansha.]); Pedersen (1988[Pedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1053-1083.]); Schwan & Warkentin (1988[Schwan, A. L. & Warkentin, J. (1988). Can. J. Chem. 66, 1686-1694.]); Gokel & Murillo (1996[Gokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425-432.]); Bradshaw & Izatt (1997[Bradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338-345.]). For related compounds, see: Levov et al. (2006[Levov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35-37.], 2008[Levov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665-1670.]); Anh et al. (2008[Anh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463-465.]); Hieu et al. (2011[Hieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd, 47, 1307-1308.]); Khieu et al. (2011[Khieu, C. K., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766-770.]).

[Scheme 1]

Experimental

Crystal data
  • C39H37NO8

  • Mr = 647.70

  • Triclinic, [P \overline 1]

  • a = 10.9914 (6) Å

  • b = 11.7868 (6) Å

  • c = 13.7725 (7) Å

  • α = 114.306 (1)°

  • β = 91.211 (1)°

  • γ = 91.984 (1)°

  • V = 1623.91 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.28 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.982

  • 19532 measured reflections

  • 8601 independent reflections

  • 7062 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.108

  • S = 1.00

  • 8601 reflections

  • 435 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.95 2.58 3.3982 (16) 145
C10—H10A⋯O1ii 0.99 2.44 3.2433 (16) 138
C12—H12A⋯O2iii 0.99 2.58 3.5345 (18) 162
C17—H17⋯O5iv 0.95 2.53 3.4409 (18) 160
C30—H30⋯O4v 0.95 2.53 3.2834 (16) 136
C41—H41A⋯O4vi 0.98 2.52 3.3758 (19) 145
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y+2, -z+1; (iii) -x+2, -y+2, -z; (iv) -x+1, -y+2, -z; (v) -x+1, -y+2, -z+1; (vi) -x+1, -y+1, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Design, synthesis and applications of macrocyclic ligands for coordination and supramolecular chemistry draw very great attention of investigators during the last forty years (Hiraoka, 1978; Pedersen, 1988; Gokel & Murillo, 1996; Bradshaw & Izatt, 1997). Recently we have developed the effective methods of synthesis of azacrown ethers containing piperidine (Levov et al., 2006, 2008; Anh et al., 2008), perhydropyrimidine (Hieu et al., 2011) and perhydrotriazine subunits (Khieu et al., 2011).

In attempts to apply this chemistry for obtaining of a macrocyclic ligand bringing the desirable functional groups, we studied the Michael addition of the cyclic secondary amine subunit of the crown ether to dimethyl acetylenedicarboxylate. The expected reaction is well known (Schwan & Warkentin, 1988), but might be highly hindered due to the steric reasons. We have found, however, that the expected N-vynilation proceeded smoothly with the formation of an N-maleinate derivative of the azacrown system.

The title compound, I, is a product of the Michael addition of the cyclic secondary amine subunit of the aza-14-crown-4 ether to dimethyl acetylenedicarboxylate (Figure 1). The title macromolecule includes the aza-14-crown-4-ether skeletal moiety and adopts a bowl conformation (Figure 2). The configuration of the C7—O8—C9—C10—O11—C12—C13—O14—C15 polyether chain is t–g(-)–t–t–g(+)–t (t = trans, 180°; g = gauche, ±60°). The piperidinone ring of the bicyclic fragment have a slightly flattenned chair conformation. The dihedral angle between the planes of the benzene rings fused to the aza-14-crown-4-ether moiety is 57.14 (4)°. The phenyl rings at the C22 and C24 carbon atoms occupy the sterically favorable equatorial positions and are rotated to each other by 34.06 (6)°. The carboxylate substituents are rotated to each other by 56.61 (5)°. The volume of the internal cavity of macrocycle I is approximately equal to 66 Å3.

The molecule of I possesses four asymmetric centers at the C1, C21, C22 and C24 carbon atoms and can have potentially numerous diastereomers. The crystal of I is racemic and consists of enantiomeric pairs with the following relative configuration of the centers: rac-1R*,21S*,22R*,24S*.

In the crystal, the molecules of I are bound to each other by weak C—H···O hydrogen bonding interactions (Table 1) into three-dimensional framework.

Related literature top

For general background to the design, synthesis, chemical properties and applications of macrocyclic ligands in coordination chemistry, see: Hiraoka (1978); Pedersen (1988); Schwan & Warkentin (1988); Gokel & Murillo (1996); Bradshaw & Izatt (1997). For related compounds, see: Levov et al. (2006, 2008); Anh et al. (2008); Hieu et al. (2011); Khieu et al. (2011).

Experimental top

Dimethyl acetylenedicarboxylate (0.14 g, 0.99 mmol) was added to a solution of bis(benzo)-(β,β'-diphenyl-γ-piperidono)aza-14-crown-4 ether (0.5 g, 0.99 mmol) in chloroform (20 ml). The reaction mixture was stirred at 293 K for 3 days (monitoring by TLC until disappearance of the starting organic compounds spots). At the end of the reaction, the formed precipitate was separated, washed with cold chloroform (50 ml) and re-crystallized from ethanol to give 0.61 g of colourless crystals of I. Yield is 94%. M.p. = 514–516 K. IR (KBr), ν/cm-1: 1600, 1632, 1713. 1H NMR (CDCl3 , 400 MHz, 300 K): δ = 3.34 and 3.41 (both s, 3H each, CH3), 4.08,4.21 and 4.27 (all m, 4H, 2H and 2H, respectively, OCH2CH2O), 4.73 (d, 2H, H22 and H24, J = 10.8), 5.19 (d, 2H, H1 and H21, J = 10.8), 6.52 and 6.64 (both m, 2H and 4H, respectively, Harom), 6.97 (c, 1H, O2C–CH=C–CO2), 6.99–7.14 (m, 12H, Harom). Anal. Calcd for C39H37NO8: C, 72.32; H, 5.76; N, 2.16. Found: C, 72.28; H, 5.87; N, 2.12.

Refinement top

The hydrogen atoms were placed in calculated positions with C—H = 0.95–1.00 Å and refined in the riding model with fixed isotropic displacement parameters [Uiso(H) = 1.5Ueq(C) for the methyl groups and 1.2Ueq(C) for the other groups].

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Michael addition of bis(benzo)-(β,β'-diphenyl-γ-piperidono)aza-14-crown-4 ether to dimethyl acetylenedicarboxylate.
[Figure 2] Fig. 2. Molecular structure of I. Displacement ellipsoids are shown at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
Dimethyl 2-[23-oxo-22,24-diphenyl-8,11,14-trioxa-25- azatetracyclo[19.3.1.02,7.015,20]pentacosa-2,4,6,15 (20),16,18- hexaen-25-yl]but-2-enedioate top
Crystal data top
C39H37NO8Z = 2
Mr = 647.70F(000) = 684
Triclinic, P1Dx = 1.325 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.9914 (6) ÅCell parameters from 8458 reflections
b = 11.7868 (6) Åθ = 2.4–32.6°
c = 13.7725 (7) ŵ = 0.09 mm1
α = 114.306 (1)°T = 100 K
β = 91.211 (1)°Prism, colourless
γ = 91.984 (1)°0.28 × 0.22 × 0.20 mm
V = 1623.91 (15) Å3
Data collection top
Bruker APEXII CCD
diffractometer
8601 independent reflections
Radiation source: fine-focus sealed tube7062 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 29.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1414
Tmin = 0.975, Tmax = 0.982k = 1616
19532 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.049P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
8601 reflections(Δ/σ)max = 0.001
435 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C39H37NO8γ = 91.984 (1)°
Mr = 647.70V = 1623.91 (15) Å3
Triclinic, P1Z = 2
a = 10.9914 (6) ÅMo Kα radiation
b = 11.7868 (6) ŵ = 0.09 mm1
c = 13.7725 (7) ÅT = 100 K
α = 114.306 (1)°0.28 × 0.22 × 0.20 mm
β = 91.211 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
8601 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
7062 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.982Rint = 0.028
19532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.00Δρmax = 0.38 e Å3
8601 reflectionsΔρmin = 0.29 e Å3
435 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.81524 (10)1.05479 (9)0.57180 (7)0.0297 (2)
O20.75693 (9)0.74987 (9)0.10597 (7)0.0250 (2)
O30.72502 (8)0.57344 (8)0.08306 (7)0.01937 (18)
O40.51599 (9)0.71161 (10)0.19678 (7)0.0273 (2)
O50.52850 (8)0.70160 (8)0.03110 (7)0.01941 (18)
C10.77006 (10)0.78011 (10)0.32029 (9)0.0143 (2)
H10.69000.76040.34440.017*
C20.83008 (11)0.65818 (11)0.26061 (9)0.0155 (2)
C30.77594 (11)0.54883 (11)0.25838 (10)0.0189 (2)
H30.70020.55210.29120.023*
C40.82952 (12)0.43446 (12)0.20946 (11)0.0239 (3)
H40.79170.36110.21020.029*
C50.93852 (13)0.42927 (12)0.15987 (11)0.0268 (3)
H50.97510.35150.12530.032*
C60.99528 (12)0.53692 (12)0.16008 (11)0.0229 (3)
H61.06980.53240.12520.028*
C70.94239 (11)0.65107 (11)0.21156 (9)0.0174 (2)
O80.99408 (8)0.76150 (8)0.21894 (7)0.01886 (18)
C91.10551 (11)0.76050 (12)0.16679 (11)0.0224 (3)
H9A1.09640.70370.09020.027*
H9B1.17210.73200.19950.027*
C101.13320 (11)0.89193 (12)0.18009 (10)0.0221 (3)
H10A1.13320.94950.25650.027*
H10B1.21470.89860.15320.027*
O111.04269 (8)0.92460 (8)0.12188 (7)0.01924 (18)
C121.02925 (12)1.05545 (12)0.16091 (11)0.0231 (3)
H12A1.09201.09310.13120.028*
H12B1.04001.09430.23960.028*
C130.90450 (12)1.07848 (12)0.12842 (11)0.0232 (3)
H13A0.89811.16760.14290.028*
H13B0.88751.02790.05140.028*
O140.82056 (8)1.04353 (8)0.19004 (7)0.01873 (18)
C150.69884 (11)1.05639 (11)0.17862 (9)0.0171 (2)
C160.64916 (13)1.10929 (11)0.11422 (10)0.0219 (3)
H160.70041.13580.07210.026*
C170.52405 (13)1.12324 (12)0.11168 (11)0.0251 (3)
H170.49031.16040.06830.030*
C180.44833 (12)1.08351 (12)0.17164 (11)0.0237 (3)
H180.36311.09390.17020.028*
C190.49853 (11)1.02807 (11)0.23404 (10)0.0194 (2)
H190.44640.99960.27430.023*
C200.62324 (11)1.01343 (10)0.23881 (9)0.0155 (2)
C210.67458 (10)0.95795 (10)0.31156 (9)0.0142 (2)
H210.60510.93160.34450.017*
C220.75899 (11)1.05411 (10)0.40273 (9)0.0148 (2)
H220.83181.07180.36800.018*
C230.80526 (11)0.99655 (11)0.47590 (9)0.0173 (2)
C240.84906 (10)0.86418 (11)0.42172 (9)0.0152 (2)
H240.93330.87090.39790.018*
N250.74589 (9)0.84833 (9)0.25395 (7)0.01416 (19)
C260.69852 (10)1.17631 (10)0.45793 (9)0.0154 (2)
C270.72415 (11)1.27232 (11)0.42612 (9)0.0181 (2)
H270.78211.26090.37300.022*
C280.66661 (12)1.38434 (12)0.47051 (10)0.0222 (3)
H280.68541.44890.44800.027*
C290.58174 (12)1.40171 (12)0.54767 (10)0.0228 (3)
H290.54231.47830.57860.027*
C300.55464 (11)1.30695 (12)0.57959 (10)0.0217 (3)
H300.49601.31860.63220.026*
C310.61253 (11)1.19494 (12)0.53530 (9)0.0191 (2)
H310.59331.13060.55790.023*
C320.85723 (11)0.79886 (11)0.49579 (9)0.0162 (2)
C330.75722 (12)0.79095 (12)0.55415 (10)0.0202 (2)
H330.68610.83380.55260.024*
C340.76049 (13)0.72117 (13)0.61443 (10)0.0257 (3)
H340.69220.71700.65410.031*
C350.86378 (14)0.65763 (13)0.61657 (11)0.0276 (3)
H350.86610.60940.65730.033*
C360.96326 (13)0.66473 (12)0.55933 (11)0.0255 (3)
H361.03390.62110.56070.031*
C370.96060 (11)0.73542 (11)0.49962 (10)0.0196 (2)
H371.02980.74050.46120.023*
C380.70379 (10)0.77556 (10)0.14631 (9)0.0145 (2)
C390.77988 (11)0.75955 (10)0.06806 (9)0.0156 (2)
H390.86100.79240.08910.019*
C400.75136 (10)0.69577 (11)0.04851 (9)0.0163 (2)
C410.68623 (13)0.51164 (13)0.19471 (10)0.0246 (3)
H41A0.65770.42580.21110.037*
H41B0.75490.51100.23910.037*
H41C0.61980.55650.20930.037*
C420.57397 (11)0.72587 (11)0.12884 (9)0.0166 (2)
C430.40551 (12)0.64856 (14)0.00728 (11)0.0258 (3)
H43A0.38210.63180.06660.039*
H43B0.35010.70730.05560.039*
H43C0.40080.57050.01670.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0505 (6)0.0199 (5)0.0154 (4)0.0054 (4)0.0083 (4)0.0039 (4)
O20.0340 (5)0.0243 (5)0.0195 (4)0.0045 (4)0.0008 (4)0.0124 (4)
O30.0254 (4)0.0162 (4)0.0143 (4)0.0019 (3)0.0010 (3)0.0044 (3)
O40.0246 (5)0.0382 (6)0.0198 (4)0.0119 (4)0.0015 (4)0.0140 (4)
O50.0159 (4)0.0261 (5)0.0174 (4)0.0025 (3)0.0027 (3)0.0104 (4)
C10.0160 (5)0.0134 (5)0.0144 (5)0.0004 (4)0.0005 (4)0.0069 (4)
C20.0175 (5)0.0148 (5)0.0139 (5)0.0007 (4)0.0022 (4)0.0058 (4)
C30.0205 (6)0.0168 (5)0.0194 (6)0.0011 (4)0.0018 (4)0.0076 (5)
C40.0284 (7)0.0145 (6)0.0289 (7)0.0006 (5)0.0023 (5)0.0092 (5)
C50.0314 (7)0.0162 (6)0.0309 (7)0.0065 (5)0.0028 (6)0.0075 (5)
C60.0223 (6)0.0214 (6)0.0254 (6)0.0051 (5)0.0040 (5)0.0095 (5)
C70.0193 (6)0.0156 (5)0.0181 (5)0.0001 (4)0.0012 (4)0.0078 (4)
O80.0176 (4)0.0174 (4)0.0226 (4)0.0005 (3)0.0043 (3)0.0091 (3)
C90.0177 (6)0.0265 (6)0.0262 (6)0.0031 (5)0.0054 (5)0.0137 (5)
C100.0178 (6)0.0275 (7)0.0227 (6)0.0040 (5)0.0008 (5)0.0125 (5)
O110.0222 (4)0.0162 (4)0.0182 (4)0.0015 (3)0.0001 (3)0.0062 (3)
C120.0260 (6)0.0158 (6)0.0256 (6)0.0035 (5)0.0063 (5)0.0065 (5)
C130.0295 (7)0.0194 (6)0.0257 (6)0.0016 (5)0.0093 (5)0.0139 (5)
O140.0206 (4)0.0205 (4)0.0181 (4)0.0010 (3)0.0021 (3)0.0110 (3)
C150.0226 (6)0.0121 (5)0.0148 (5)0.0008 (4)0.0011 (4)0.0039 (4)
C160.0322 (7)0.0166 (6)0.0181 (6)0.0000 (5)0.0013 (5)0.0087 (5)
C170.0350 (7)0.0190 (6)0.0226 (6)0.0040 (5)0.0058 (5)0.0099 (5)
C180.0240 (6)0.0207 (6)0.0251 (6)0.0043 (5)0.0051 (5)0.0082 (5)
C190.0221 (6)0.0162 (5)0.0183 (6)0.0013 (4)0.0009 (5)0.0055 (5)
C200.0213 (6)0.0112 (5)0.0128 (5)0.0008 (4)0.0022 (4)0.0039 (4)
C210.0161 (5)0.0138 (5)0.0127 (5)0.0000 (4)0.0004 (4)0.0056 (4)
C220.0174 (5)0.0136 (5)0.0131 (5)0.0007 (4)0.0006 (4)0.0054 (4)
C230.0198 (6)0.0155 (5)0.0163 (5)0.0018 (4)0.0029 (4)0.0066 (4)
C240.0163 (5)0.0156 (5)0.0144 (5)0.0002 (4)0.0009 (4)0.0071 (4)
N250.0176 (5)0.0122 (4)0.0120 (4)0.0008 (3)0.0016 (3)0.0044 (4)
C260.0172 (5)0.0135 (5)0.0133 (5)0.0008 (4)0.0025 (4)0.0037 (4)
C270.0210 (6)0.0168 (5)0.0161 (5)0.0003 (4)0.0020 (4)0.0064 (4)
C280.0293 (7)0.0168 (6)0.0208 (6)0.0009 (5)0.0016 (5)0.0081 (5)
C290.0256 (6)0.0197 (6)0.0189 (6)0.0067 (5)0.0014 (5)0.0035 (5)
C300.0182 (6)0.0260 (6)0.0168 (6)0.0011 (5)0.0010 (4)0.0047 (5)
C310.0217 (6)0.0195 (6)0.0159 (5)0.0023 (4)0.0001 (4)0.0074 (5)
C320.0203 (6)0.0140 (5)0.0139 (5)0.0014 (4)0.0030 (4)0.0055 (4)
C330.0219 (6)0.0195 (6)0.0179 (6)0.0000 (5)0.0005 (5)0.0064 (5)
C340.0335 (7)0.0241 (6)0.0193 (6)0.0071 (5)0.0014 (5)0.0093 (5)
C350.0405 (8)0.0204 (6)0.0255 (7)0.0078 (5)0.0087 (6)0.0143 (5)
C360.0290 (7)0.0181 (6)0.0294 (7)0.0010 (5)0.0103 (5)0.0103 (5)
C370.0197 (6)0.0172 (5)0.0204 (6)0.0003 (4)0.0031 (5)0.0065 (5)
C380.0173 (5)0.0121 (5)0.0143 (5)0.0005 (4)0.0020 (4)0.0060 (4)
C390.0170 (5)0.0135 (5)0.0164 (5)0.0003 (4)0.0014 (4)0.0067 (4)
C400.0140 (5)0.0180 (5)0.0163 (5)0.0001 (4)0.0020 (4)0.0064 (4)
C410.0307 (7)0.0230 (6)0.0148 (6)0.0048 (5)0.0036 (5)0.0030 (5)
C420.0189 (5)0.0140 (5)0.0166 (5)0.0003 (4)0.0009 (4)0.0061 (4)
C430.0185 (6)0.0328 (7)0.0259 (7)0.0056 (5)0.0059 (5)0.0127 (6)
Geometric parameters (Å, º) top
O1—C231.2125 (15)C19—C201.3909 (17)
O2—C401.2048 (14)C19—H190.9500
O3—C401.3378 (14)C20—C211.5135 (15)
O3—C411.4511 (14)C21—N251.4717 (14)
O4—C421.2072 (15)C21—C221.5584 (16)
O5—C421.3373 (14)C21—H211.0000
O5—C431.4422 (15)C22—C261.5101 (16)
C1—N251.4703 (14)C22—C231.5164 (16)
C1—C21.5141 (16)C22—H221.0000
C1—C241.5610 (16)C23—C241.5269 (16)
C1—H11.0000C24—C321.5129 (15)
C2—C31.3892 (16)C24—H241.0000
C2—C71.4081 (17)N25—C381.4297 (14)
C3—C41.3935 (17)C26—C311.3934 (16)
C3—H30.9500C26—C271.3939 (16)
C4—C51.382 (2)C27—C281.3881 (17)
C4—H40.9500C27—H270.9500
C5—C61.3934 (19)C28—C291.3847 (19)
C5—H50.9500C28—H280.9500
C6—C71.3918 (17)C29—C301.3844 (19)
C6—H60.9500C29—H290.9500
C7—O81.3656 (14)C30—C311.3898 (18)
O8—C91.4308 (14)C30—H300.9500
C9—C101.5025 (18)C31—H310.9500
C9—H9A0.9900C32—C371.3935 (17)
C9—H9B0.9900C32—C331.3982 (17)
C10—O111.4240 (15)C33—C341.3892 (18)
C10—H10A0.9900C33—H330.9500
C10—H10B0.9900C34—C351.388 (2)
O11—C121.4234 (15)C34—H340.9500
C12—C131.5013 (19)C35—C361.381 (2)
C12—H12A0.9900C35—H350.9500
C12—H12B0.9900C36—C371.3914 (18)
C13—O141.4268 (14)C36—H360.9500
C13—H13A0.9900C37—H370.9500
C13—H13B0.9900C38—C391.3335 (16)
O14—C151.3647 (15)C38—C421.4995 (16)
C15—C161.3901 (16)C39—C401.4866 (16)
C15—C201.4070 (16)C39—H390.9500
C16—C171.3921 (19)C41—H41A0.9800
C16—H160.9500C41—H41B0.9800
C17—C181.384 (2)C41—H41C0.9800
C17—H170.9500C43—H43A0.9800
C18—C191.3919 (17)C43—H43B0.9800
C18—H180.9500C43—H43C0.9800
C40—O3—C41114.59 (9)C26—C22—C21111.27 (9)
C42—O5—C43115.98 (10)C23—C22—C21110.24 (9)
N25—C1—C2113.05 (9)C26—C22—H22106.6
N25—C1—C24110.14 (9)C23—C22—H22106.6
C2—C1—C24110.35 (9)C21—C22—H22106.6
N25—C1—H1107.7O1—C23—C22122.18 (11)
C2—C1—H1107.7O1—C23—C24121.31 (11)
C24—C1—H1107.7C22—C23—C24116.32 (10)
C3—C2—C7118.04 (11)C32—C24—C23113.21 (9)
C3—C2—C1119.03 (10)C32—C24—C1108.91 (9)
C7—C2—C1122.84 (10)C23—C24—C1113.21 (9)
C2—C3—C4121.92 (12)C32—C24—H24107.0
C2—C3—H3119.0C23—C24—H24107.0
C4—C3—H3119.0C1—C24—H24107.0
C5—C4—C3119.04 (12)C38—N25—C1116.67 (9)
C5—C4—H4120.5C38—N25—C21114.50 (9)
C3—C4—H4120.5C1—N25—C21110.81 (9)
C4—C5—C6120.66 (12)C31—C26—C27118.32 (11)
C4—C5—H5119.7C31—C26—C22122.69 (10)
C6—C5—H5119.7C27—C26—C22118.88 (10)
C7—C6—C5119.73 (12)C28—C27—C26121.26 (11)
C7—C6—H6120.1C28—C27—H27119.4
C5—C6—H6120.1C26—C27—H27119.4
O8—C7—C6123.51 (11)C29—C28—C27119.77 (12)
O8—C7—C2115.92 (10)C29—C28—H28120.1
C6—C7—C2120.57 (11)C27—C28—H28120.1
C7—O8—C9118.88 (9)C30—C29—C28119.69 (12)
O8—C9—C10106.65 (10)C30—C29—H29120.2
O8—C9—H9A110.4C28—C29—H29120.2
C10—C9—H9A110.4C29—C30—C31120.50 (12)
O8—C9—H9B110.4C29—C30—H30119.7
C10—C9—H9B110.4C31—C30—H30119.7
H9A—C9—H9B108.6C30—C31—C26120.46 (11)
O11—C10—C9108.74 (10)C30—C31—H31119.8
O11—C10—H10A109.9C26—C31—H31119.8
C9—C10—H10A109.9C37—C32—C33118.52 (11)
O11—C10—H10B109.9C37—C32—C24120.51 (11)
C9—C10—H10B109.9C33—C32—C24120.70 (11)
H10A—C10—H10B108.3C34—C33—C32120.85 (12)
C12—O11—C10113.17 (10)C34—C33—H33119.6
O11—C12—C13108.94 (10)C32—C33—H33119.6
O11—C12—H12A109.9C35—C34—C33119.87 (13)
C13—C12—H12A109.9C35—C34—H34120.1
O11—C12—H12B109.9C33—C34—H34120.1
C13—C12—H12B109.9C36—C35—C34119.87 (12)
H12A—C12—H12B108.3C36—C35—H35120.1
O14—C13—C12106.48 (10)C34—C35—H35120.1
O14—C13—H13A110.4C35—C36—C37120.37 (12)
C12—C13—H13A110.4C35—C36—H36119.8
O14—C13—H13B110.4C37—C36—H36119.8
C12—C13—H13B110.4C36—C37—C32120.52 (12)
H13A—C13—H13B108.6C36—C37—H37119.7
C15—O14—C13119.73 (10)C32—C37—H37119.7
O14—C15—C16124.16 (11)C39—C38—N25118.66 (10)
O14—C15—C20115.34 (10)C39—C38—C42124.16 (10)
C16—C15—C20120.50 (11)N25—C38—C42117.15 (10)
C15—C16—C17119.74 (12)C38—C39—C40126.99 (11)
C15—C16—H16120.1C38—C39—H39116.5
C17—C16—H16120.1C40—C39—H39116.5
C18—C17—C16120.65 (12)O2—C40—O3123.95 (11)
C18—C17—H17119.7O2—C40—C39122.18 (11)
C16—C17—H17119.7O3—C40—C39113.80 (10)
C17—C18—C19119.21 (12)O3—C41—H41A109.5
C17—C18—H18120.4O3—C41—H41B109.5
C19—C18—H18120.4H41A—C41—H41B109.5
C20—C19—C18121.55 (12)O3—C41—H41C109.5
C20—C19—H19119.2H41A—C41—H41C109.5
C18—C19—H19119.2H41B—C41—H41C109.5
C19—C20—C15118.32 (11)O4—C42—O5123.60 (11)
C19—C20—C21119.78 (11)O4—C42—C38123.36 (11)
C15—C20—C21121.84 (10)O5—C42—C38113.02 (10)
N25—C21—C20112.36 (9)O5—C43—H43A109.5
N25—C21—C22107.51 (9)O5—C43—H43B109.5
C20—C21—C22111.79 (9)H43A—C43—H43B109.5
N25—C21—H21108.4O5—C43—H43C109.5
C20—C21—H21108.4H43A—C43—H43C109.5
C22—C21—H21108.4H43B—C43—H43C109.5
C26—C22—C23115.04 (9)
N25—C1—C2—C3125.05 (11)N25—C1—C24—C32171.97 (9)
C24—C1—C2—C3111.10 (12)C2—C1—C24—C3262.52 (12)
N25—C1—C2—C758.41 (14)N25—C1—C24—C2345.09 (13)
C24—C1—C2—C765.44 (14)C2—C1—C24—C23170.60 (9)
C7—C2—C3—C40.05 (18)C2—C1—N25—C3839.74 (13)
C1—C2—C3—C4176.75 (11)C24—C1—N25—C38163.70 (9)
C2—C3—C4—C51.30 (19)C2—C1—N25—C21173.16 (9)
C3—C4—C5—C61.0 (2)C24—C1—N25—C2162.87 (12)
C4—C5—C6—C70.6 (2)C20—C21—N25—C3832.35 (13)
C5—C6—C7—O8177.52 (12)C22—C21—N25—C38155.76 (9)
C5—C6—C7—C22.00 (19)C20—C21—N25—C1166.85 (9)
C3—C2—C7—O8177.85 (10)C22—C21—N25—C169.74 (11)
C1—C2—C7—O81.28 (16)C23—C22—C26—C3146.14 (15)
C3—C2—C7—C61.70 (17)C21—C22—C26—C3180.13 (13)
C1—C2—C7—C6178.27 (11)C23—C22—C26—C27137.69 (11)
C6—C7—O8—C93.25 (17)C21—C22—C26—C2796.03 (12)
C2—C7—O8—C9177.21 (10)C31—C26—C27—C280.48 (18)
C7—O8—C9—C10174.76 (10)C22—C26—C27—C28176.81 (11)
O8—C9—C10—O1166.55 (13)C26—C27—C28—C290.20 (19)
C9—C10—O11—C12156.09 (10)C27—C28—C29—C300.26 (19)
C10—O11—C12—C13156.89 (10)C28—C29—C30—C310.43 (19)
O11—C12—C13—O1470.43 (12)C29—C30—C31—C260.14 (19)
C12—C13—O14—C15178.94 (10)C27—C26—C31—C300.31 (18)
C13—O14—C15—C164.04 (17)C22—C26—C31—C30176.49 (11)
C13—O14—C15—C20176.88 (10)C23—C24—C32—C37132.76 (11)
O14—C15—C16—C17177.13 (11)C1—C24—C32—C37100.36 (12)
C20—C15—C16—C171.91 (18)C23—C24—C32—C3353.27 (15)
C15—C16—C17—C180.82 (19)C1—C24—C32—C3373.60 (13)
C16—C17—C18—C190.6 (2)C37—C32—C33—C340.18 (18)
C17—C18—C19—C201.01 (19)C24—C32—C33—C34173.90 (11)
C18—C19—C20—C150.06 (17)C32—C33—C34—C350.40 (19)
C18—C19—C20—C21177.24 (11)C33—C34—C35—C360.4 (2)
O14—C15—C20—C19177.59 (10)C34—C35—C36—C370.1 (2)
C16—C15—C20—C191.53 (17)C35—C36—C37—C320.70 (19)
O14—C15—C20—C210.48 (16)C33—C32—C37—C360.73 (18)
C16—C15—C20—C21178.64 (11)C24—C32—C37—C36173.36 (11)
C19—C20—C21—N25124.26 (11)C1—N25—C38—C39107.40 (12)
C15—C20—C21—N2558.67 (14)C21—N25—C38—C39120.86 (11)
C19—C20—C21—C22114.76 (12)C1—N25—C38—C4274.83 (13)
C15—C20—C21—C2262.31 (14)C21—N25—C38—C4256.91 (13)
N25—C21—C22—C26173.02 (9)N25—C38—C39—C40175.09 (10)
C20—C21—C22—C2649.26 (13)C42—C38—C39—C402.52 (19)
N25—C21—C22—C2358.10 (11)C41—O3—C40—O28.29 (17)
C20—C21—C22—C23178.15 (9)C41—O3—C40—C39174.69 (10)
C26—C22—C23—O114.07 (17)C38—C39—C40—O2116.68 (14)
C21—C22—C23—O1140.87 (12)C38—C39—C40—O366.24 (15)
C26—C22—C23—C24170.95 (10)C43—O5—C42—O43.85 (17)
C21—C22—C23—C2444.14 (13)C43—O5—C42—C38177.49 (10)
O1—C23—C24—C3222.51 (16)C39—C38—C42—O4159.93 (12)
C22—C23—C24—C32162.46 (10)N25—C38—C42—O422.44 (17)
O1—C23—C24—C1147.08 (12)C39—C38—C42—O521.41 (16)
C22—C23—C24—C137.89 (14)N25—C38—C42—O5156.22 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.583.3982 (16)145
C10—H10A···O1ii0.992.443.2433 (16)138
C12—H12A···O2iii0.992.583.5345 (18)162
C17—H17···O5iv0.952.533.4409 (18)160
C30—H30···O4v0.952.533.2834 (16)136
C41—H41A···O4vi0.982.523.3758 (19)145
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z+1; (iii) x+2, y+2, z; (iv) x+1, y+2, z; (v) x+1, y+2, z+1; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC39H37NO8
Mr647.70
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)10.9914 (6), 11.7868 (6), 13.7725 (7)
α, β, γ (°)114.306 (1), 91.211 (1), 91.984 (1)
V3)1623.91 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.28 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.975, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
19532, 8601, 7062
Rint0.028
(sin θ/λ)max1)0.682
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.108, 1.00
No. of reflections8601
No. of parameters435
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2001), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O3i0.952.583.3982 (16)145
C10—H10A···O1ii0.992.443.2433 (16)138
C12—H12A···O2iii0.992.583.5345 (18)162
C17—H17···O5iv0.952.533.4409 (18)160
C30—H30···O4v0.952.533.2834 (16)136
C41—H41A···O4vi0.982.523.3758 (19)145
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y+2, z+1; (iii) x+2, y+2, z; (iv) x+1, y+2, z; (v) x+1, y+2, z+1; (vi) x+1, y+1, z.
 

References

First citationAnh, L. T., Levov, A. N., Soldatenkov, A. T., Gruzdev, R. D. & Hieu, T. H. (2008). Russ. J. Org. Chem. 44, 463–465.  Google Scholar
First citationBradshaw, J. S. & Izatt, R. M. (1997). Acc. Chem. Res. 30, 338–345.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGokel, G. W. & Murillo, O. (1996). Acc. Chem. Res. 29, 425–432.  CrossRef CAS Web of Science Google Scholar
First citationHieu, T. H., Anh, L. T., Soldatenkov, A. T., Golovtsov, N. I. & Soldatova, S. A. (2011). Chem. Heterocycl. Compd, 47, 1307–1308.  Google Scholar
First citationHiraoka, M. (1978). In Crown Compounds: Their Characteristics and Application. Tokyo: Kodansha.  Google Scholar
First citationKhieu, C. K., Soldatenkov, A. T., Anh, L. T., Levov, A. N., Smol'yakov, A. F., Khrustalev, V. N. & Antipin, M. Yu. (2011). Russ. J. Org. Chem. 47, 766–770.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Komarova, A. I., Soldatenkov, A. T., Avramenko, G. V., Soldatova, S. A. & Khrustalev, V. N. (2008). Russ. J. Org. Chem. 44, 1665–1670.  Web of Science CrossRef CAS Google Scholar
First citationLevov, A. N., Strokina, V. M., Komarova, A. I., Anh, L. T., Soldatenkov, A. T. & Khrustalev, V. N. (2006). Mendeleev Commun. 16, 35–37.  Web of Science CSD CrossRef Google Scholar
First citationPedersen, C. J. (1988). Angew. Chem. Int. Ed. Engl. 27, 1053–1083.  CrossRef Web of Science Google Scholar
First citationSchwan, A. L. & Warkentin, J. (1988). Can. J. Chem. 66, 1686–1694.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1386-o1387
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds