organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1499

N-(3-Hy­dr­oxy­phen­yl)nicotinamide

aCollege of Chemistry, Liaoning University, Shenyang, Liaoning 110036, People's Republic of China
*Correspondence e-mail: xdzhang@lnu.edu.cn

(Received 3 April 2012; accepted 10 April 2012; online 21 April 2012)

In the title mol­ecule, C12H10N2O2, the benzene and pyridine rings form a dihedral angle of 5.01 (8)°. The amide group is twisted by 33.54 (7)° from the plane of the pyridine ring. In the crystal, mol­ecules are linked into centrosymmetric dimers via pairs of O—H⋯N hydrogen bonds. N—H⋯O hydrogen bonds further link dimers related into chains along the b axis.

Related literature

For related structures, see: Mocilac & Gallagher (2011[Mocilac, P. & Gallagher, J. F. (2011). CrystEngComm, 13, 5354-5366.]); Roopan et al. (2009[Roopan, S. M., Hathwar, V. R., Kumar, A. S., Malathi, N. & Khan, F. N. (2009). Acta Cryst. E65, o571.]). For modern aspects of boronic acid derivatives, see: Hall (2005[Hall, D. G. (2005). Editor. Boronic Acids. Preparation and Application in Organic Synthesis and Medicine. Weinheim: Wiley VCH.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N2O2

  • Mr = 214.22

  • Monoclinic, P 21 /c

  • a = 12.1741 (13) Å

  • b = 5.2613 (6) Å

  • c = 15.3113 (16) Å

  • β = 94.428 (2)°

  • V = 977.79 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.35 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.988

  • 5813 measured reflections

  • 1928 independent reflections

  • 1572 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 1.04

  • 1928 reflections

  • 150 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2B⋯N1i 0.82 2.00 2.817 (2) 173
N2—H2A⋯O1ii 0.83 (2) 2.29 (2) 3.107 (2) 166
Symmetry codes: (i) -x+1, -y, -z+2; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Organoboronic acid derivatives have recently received increasing interest in a broad range of biological, medicinal, and synthetic applications (Hall, 2005). Especially, such compounds have been utilized as synthetic intermediates. For example, the famous Suzuki reaction is the coupling of organoboronic acid with aryl halide. Boronic acid containing compounds employed in the cross coupling must be activated by using palladium catalyst. Other metal ion could make boronic acid in the different transformational mode.

The title compound, N-(3-hydroxyphenyl)nicotinamide, is obtained by reaction of N-(3-phenylboronic acid)nicotinamide with copper(II) ion. The molecular structure is shown in Fig. 1. Conformational studies show that substituent of the phenyl ring is one of key factors for solid state molecular conformations and supramolecular aggregation. Comparisons between N-phenylnicotinamide and N-(3-hydroxyphenyl)nicotinamide reveal that the dihedral angle between the phenyl and pyridine rings is 64.81 (1) ° (Roopan et al., 2009) in the former and 5.02 (8) ° in the latter. This value in N-(3-methylphenyl)nicotinamide is 57.23 (6) ° (Mocilac & Gallagher, 2011). Oxygen atom from amide group and nitrogen atom from pyridine ring in N-phenylnicotinamide are on the same side of the molecule. The distribution of corresponding atoms in N-(3-methylphenyl)nicotinamide is similar to that of N-phenylnicotinamide, but contrary to that of N-(3-hydroxyphenyl)nicotinamide.

In the crystal structure, the molecules are paired into centrosymmetric dimers via O—H···N hydrogen bonds (Table 1). Intermolecular N—H···O hydrogen bonds (Table 1) link further these dimers related be translation along axis b into chains.

Related literature top

For related structures, see: Mocilac & Gallagher (2011); Roopan et al. (2009). For modern aspects of boronic acid derivatives, see: Hall (2005).

Experimental top

N-(3-Phenylboronic acid)nicotinamide (10 mmol) was added to 20 ml e thanol-water(v:v=8:2), followed by the dropwise addition of copper nitrate(5 mmol) in 5 ml water. The mixture was stirred at room temperature for 8 h. After filtered, the filtrate was evaporated. Crystals were obtained after about two weeks.

Refinement top

The amide H atom was located in Fourier different map and refined isotropically. All other H atoms were placed in geometrically idealized positions (Csp2—H = 0.93, and O—H = 0.82) and refined as riding, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
N-(3-Hydroxyphenyl)nicotinamide top
Crystal data top
C12H10N2O2F(000) = 448
Mr = 214.22Dx = 1.455 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 82 reflections
a = 12.1741 (13) Åθ = 2.2–23.3°
b = 5.2613 (6) ŵ = 0.10 mm1
c = 15.3113 (16) ÅT = 293 K
β = 94.428 (2)°Block, colourless
V = 977.79 (18) Å30.35 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1928 independent reflections
Radiation source: fine-focus sealed tube1572 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 26.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1515
Tmin = 0.952, Tmax = 0.988k = 64
5813 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0441P)2 + 0.3178P]
where P = (Fo2 + 2Fc2)/3
1928 reflections(Δ/σ)max < 0.001
150 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C12H10N2O2V = 977.79 (18) Å3
Mr = 214.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.1741 (13) ŵ = 0.10 mm1
b = 5.2613 (6) ÅT = 293 K
c = 15.3113 (16) Å0.35 × 0.20 × 0.18 mm
β = 94.428 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1928 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1572 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.988Rint = 0.022
5813 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.31 e Å3
1928 reflectionsΔρmin = 0.17 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.10112 (9)0.0774 (2)0.89614 (8)0.0393 (3)
H2B0.13690.01790.92980.059*
N20.46607 (10)0.4089 (3)0.86950 (8)0.0293 (3)
C120.28388 (12)0.2438 (3)0.88031 (10)0.0289 (3)
H120.31550.11130.91370.035*
O10.51225 (9)0.8283 (2)0.87911 (8)0.0403 (3)
C50.73908 (12)0.6822 (3)0.88082 (10)0.0309 (4)
H50.72210.82990.84930.037*
N10.79027 (10)0.2474 (3)0.97897 (9)0.0327 (3)
C110.17038 (12)0.2524 (3)0.86264 (10)0.0310 (4)
C60.53822 (12)0.6020 (3)0.88392 (10)0.0279 (3)
C20.86888 (13)0.3961 (3)0.95025 (10)0.0339 (4)
H20.94200.34930.96320.041*
C90.19122 (13)0.6308 (3)0.77876 (10)0.0354 (4)
H90.15960.76050.74410.042*
C80.30484 (13)0.6289 (3)0.79759 (10)0.0310 (4)
H80.34900.75600.77670.037*
C40.65565 (12)0.5257 (3)0.90684 (9)0.0267 (3)
C70.35048 (12)0.4310 (3)0.84863 (9)0.0267 (3)
C10.84752 (13)0.6154 (3)0.90241 (11)0.0349 (4)
H10.90480.71590.88510.042*
C30.68548 (12)0.3122 (3)0.95639 (10)0.0307 (4)
H30.62980.20870.97490.037*
C100.12390 (13)0.4454 (3)0.81013 (10)0.0349 (4)
H100.04820.45010.79620.042*
H2A0.4898 (13)0.261 (4)0.8741 (10)0.030 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0341 (6)0.0315 (7)0.0528 (8)0.0008 (5)0.0074 (5)0.0036 (5)
N20.0292 (7)0.0198 (7)0.0385 (8)0.0021 (6)0.0012 (5)0.0000 (6)
C120.0318 (8)0.0221 (8)0.0323 (8)0.0038 (6)0.0013 (6)0.0014 (6)
O10.0347 (6)0.0231 (6)0.0624 (8)0.0011 (5)0.0004 (5)0.0003 (5)
C50.0350 (8)0.0266 (8)0.0311 (8)0.0025 (7)0.0027 (6)0.0010 (6)
N10.0306 (7)0.0273 (7)0.0396 (7)0.0001 (6)0.0012 (6)0.0012 (6)
C110.0303 (8)0.0270 (8)0.0360 (8)0.0001 (7)0.0037 (6)0.0074 (7)
C60.0301 (8)0.0238 (8)0.0298 (8)0.0004 (6)0.0027 (6)0.0003 (6)
C20.0276 (8)0.0333 (9)0.0402 (9)0.0008 (7)0.0006 (7)0.0051 (7)
C90.0422 (9)0.0320 (9)0.0311 (8)0.0121 (8)0.0025 (7)0.0001 (7)
C80.0366 (8)0.0268 (8)0.0294 (8)0.0010 (7)0.0007 (6)0.0011 (6)
C40.0299 (8)0.0228 (8)0.0274 (7)0.0000 (6)0.0023 (6)0.0049 (6)
C70.0283 (7)0.0229 (8)0.0284 (7)0.0021 (6)0.0002 (6)0.0044 (6)
C10.0301 (8)0.0372 (9)0.0381 (9)0.0065 (7)0.0062 (7)0.0026 (7)
C30.0295 (8)0.0266 (8)0.0360 (8)0.0034 (6)0.0021 (6)0.0018 (7)
C100.0289 (8)0.0383 (10)0.0370 (9)0.0070 (7)0.0010 (7)0.0069 (7)
Geometric parameters (Å, º) top
O2—C111.3741 (19)C11—C101.388 (2)
O2—H2B0.8200C6—C41.500 (2)
N2—C61.350 (2)C2—C11.381 (2)
N2—C71.4234 (19)C2—H20.9300
N2—H2A0.831 (18)C9—C101.384 (2)
C12—C71.387 (2)C9—C81.391 (2)
C12—C111.388 (2)C9—H90.9300
C12—H120.9300C8—C71.391 (2)
O1—C61.2325 (18)C8—H80.9300
C5—C11.381 (2)C4—C31.388 (2)
C5—C41.389 (2)C1—H10.9300
C5—H50.9300C3—H30.9300
N1—C21.336 (2)C10—H100.9300
N1—C31.3396 (19)
C11—O2—H2B109.5C10—C9—H9119.0
C6—N2—C7126.48 (14)C8—C9—H9119.0
C6—N2—H2A118.2 (12)C9—C8—C7117.99 (15)
C7—N2—H2A115.3 (11)C9—C8—H8121.0
C7—C12—C11120.56 (14)C7—C8—H8121.0
C7—C12—H12119.7C3—C4—C5118.02 (14)
C11—C12—H12119.7C3—C4—C6123.28 (13)
C1—C5—C4119.16 (15)C5—C4—C6118.62 (14)
C1—C5—H5120.4C12—C7—C8120.59 (14)
C4—C5—H5120.4C12—C7—N2117.24 (13)
C2—N1—C3117.27 (14)C8—C7—N2122.16 (14)
O2—C11—C12122.38 (14)C2—C1—C5118.47 (15)
O2—C11—C10118.15 (14)C2—C1—H1120.8
C12—C11—C10119.47 (14)C5—C1—H1120.8
O1—C6—N2123.82 (14)N1—C3—C4123.40 (14)
O1—C6—C4120.52 (14)N1—C3—H3118.3
N2—C6—C4115.67 (13)C4—C3—H3118.3
N1—C2—C1123.60 (15)C9—C10—C11119.38 (14)
N1—C2—H2118.2C9—C10—H10120.3
C1—C2—H2118.2C11—C10—H10120.3
C10—C9—C8121.96 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N1i0.822.002.817 (2)173
N2—H2A···O1ii0.83 (2)2.29 (2)3.107 (2)166
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formulaC12H10N2O2
Mr214.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)12.1741 (13), 5.2613 (6), 15.3113 (16)
β (°) 94.428 (2)
V3)977.79 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.35 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.952, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
5813, 1928, 1572
Rint0.022
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.04
No. of reflections1928
No. of parameters150
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.17

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2B···N1i0.822.002.817 (2)173
N2—H2A···O1ii0.83 (2)2.29 (2)3.107 (2)166
Symmetry codes: (i) x+1, y, z+2; (ii) x, y1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant Nos. 20971062 and 21171081) and the Foundation of the 211 Project for Innovative Talents Training, Liaoning University.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHall, D. G. (2005). Editor. Boronic Acids. Preparation and Application in Organic Synthesis and Medicine. Weinheim: Wiley VCH.  Google Scholar
First citationMocilac, P. & Gallagher, J. F. (2011). CrystEngComm, 13, 5354–5366.  Web of Science CSD CrossRef CAS Google Scholar
First citationRoopan, S. M., Hathwar, V. R., Kumar, A. S., Malathi, N. & Khan, F. N. (2009). Acta Cryst. E65, o571.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1499
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds