organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1523

1-(Adamantan-1-yl)-3-(4-fluoro­phen­yl)thio­urea

aOndokuz Mayıs University, Arts and Sciences Faculty, Department of Physics, 55139 Samsun, Turkey, and bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451 Riyadh, Saudi Arabia
*Correspondence e-mail: gunesd@omu.edu.tr

(Received 11 April 2012; accepted 19 April 2012; online 25 April 2012)

In the title mol­ecule, C17H21FN2S, the mean planes of the benzene ring and the thio­urea fragment form a dihedral angle of 61.93 (9)°. In the crystal, pairs of weak N—H⋯S inter­actions link the mol­ecules, forming inversion dimers.

Related literature

For background to the biological activity of adamantane and thio­urea derivatives, see: Vernier et al. (1969[Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); Li et al. (2009[Li, J., Tan, Z., Tang, S., Hewlett, I., Pang, R., He, M., He, S., Tian, B., Chen, K. & Yang, M. (2009). Bioorg. Med. Chem. 17, 3177-3188.]); Hunter et al. (2008[Hunter, R., Younis, Y., Muhanji, C. I., Curtin, T. L., Naidoo, K. J., Petersen, M., Bailey, C. M., Basavapathruni, A. & Anderson, K. S. (2008). Bioorg. Med. Chem. 16, 10270-10280.]); Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.], 2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]). For the crystal structures of related adamantane deriv­atives, see: Kadi et al. (2011[Kadi, A. A., Alanzi, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3127.]); Almutairi et al. (2012[Almutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.]); Al-Abdullah et al. (2012[Al-Abdullah, E. S., Asiri, H. H., El-Emam, A. & Ng, S. W. (2012). Acta Cryst. E68, o345.]).

[Scheme 1]

Experimental

Crystal data
  • C17H21FN2S

  • Mr = 304.42

  • Triclinic, [P \overline 1]

  • a = 6.4274 (5) Å

  • b = 11.4727 (9) Å

  • c = 11.5870 (9) Å

  • α = 113.510 (6)°

  • β = 94.721 (6)°

  • γ = 94.837 (6)°

  • V = 774.39 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 296 K

  • 0.80 × 0.35 × 0.11 mm

Data collection
  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.847, Tmax = 0.977

  • 11154 measured reflections

  • 3048 independent reflections

  • 2224 reflections with I > 2σ(I)

  • Rint = 0.078

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.118

  • S = 1.01

  • 3048 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.67 3.3939 (19) 142
Symmetry code: (i) -x, -y+2, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Derivatives of adamantane have long been known for their diverse biological activities including antiviral activity against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004). Moreover, adamantane derivatives were recently reported to exhibit marked antibacterial and anti-inflammatory activities (Kadi et al., 2007, 2010). In addition, 1,3-disubstituted thiourea derivatives were reported to possess potent antiviral activity (Li et al., 2009; Hunter et al., 2008). In continuation of our structural studies of adamantane derivatives (Kadi et al., 2011; Al-Abdullah et al., 2012; Almutairi et al., 2012), we present here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the adamantyl and fluorobenzene fragments are bridged by thiourea fragment. The C—C single bond distances range from 1.514 (4) Å to 1.537 (3) Å and CC bond distances for benzene ring range from 1.359 (4) Å to 1.383 (3) Å. The torsion angle of C6—C1—N1—C7 is 62.7 (3)° and the bond distance between the F and C atoms is 1.362 (3) Å. The weak intermolecular N1—H1···S1 hydrogen bond (Table 1) link two molecules into centrosymmetric dimer.

Related literature top

For background to the biological activity of adamantane and thiourea derivatives, see: Vernier et al. (1969); El-Emam et al. (2004); Li et al. (2009); Hunter et al. (2008); Kadi et al. (2007, 2010). For the crystal structures of related adamantane derivatives, see: Kadi et al. (2011); Almutairi et al. (2012); Al-Abdullah et al. (2012).

Experimental top

A mixture of 1-adamantylamine (1.51 g m, 0.01 mol) and 4-fluorophenyl isothiocyanate (1.53 g m, 0.01 mol), in ethanol (10 ml), was heated under reflux for 4 h. On cooling, the precipitated crude product was filtered, dried and crystallized from ethanol to yield 2.68 g m (88%) of the title compound (C17H21FN2S) as colourless crystals. M.P.: 169–171 oC. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in EtOH/CHCl3 (1:1) at room temperature. 1H NMR (DMSO-d6, 500.13 MHz): d 1.64 (s, 6H, Adamantane-H), 2.06 (s, 3H, Adamantane-H), 2.23 (s, 6H, Adamantane-H), 7.10–7.14 (m, 2H, Ar—H), 7.24 (s, 1H, NH), 7.43 (d, 2H, Ar—H, J = 6.5 Hz), 9.25 (s, 1H, NH). 13C NMR (DMSO-d6, 125.76 MHz): 28.98, 35.94, 40.80, 53.24 (Adamantane-C), 114.72, 125.49, 135.79, 157.66 (Ar—C), 179.06 (C=S).

Refinement top

All H atoms were positioned geometrically [N—H=0.860 Å and C—H=0.930 Å, 0.970 Å or 0.980 Å] and treated as riding with Uiso(H)=1.2Ueq(C,N).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
1-(Adamantan-1-yl)-3-(4-fluorophenyl)thiourea top
Crystal data top
C17H21FN2SZ = 2
Mr = 304.42F(000) = 324
Triclinic, P1Dx = 1.306 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.4274 (5) ÅCell parameters from 14319 reflections
b = 11.4727 (9) Åθ = 3.2–27.9°
c = 11.5870 (9) ŵ = 0.22 mm1
α = 113.510 (6)°T = 296 K
β = 94.721 (6)°Prism, colourless
γ = 94.837 (6)°0.80 × 0.35 × 0.11 mm
V = 774.39 (10) Å3
Data collection top
Stoe IPDS 2
diffractometer
3048 independent reflections
Radiation source: fine-focus sealed tube2224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
rotation method scansθmax = 26.0°, θmin = 3.2°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 77
Tmin = 0.847, Tmax = 0.977k = 1414
11154 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0575P)2 + 0.0575P]
where P = (Fo2 + 2Fc2)/3
3048 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C17H21FN2Sγ = 94.837 (6)°
Mr = 304.42V = 774.39 (10) Å3
Triclinic, P1Z = 2
a = 6.4274 (5) ÅMo Kα radiation
b = 11.4727 (9) ŵ = 0.22 mm1
c = 11.5870 (9) ÅT = 296 K
α = 113.510 (6)°0.80 × 0.35 × 0.11 mm
β = 94.721 (6)°
Data collection top
Stoe IPDS 2
diffractometer
3048 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
2224 reflections with I > 2σ(I)
Tmin = 0.847, Tmax = 0.977Rint = 0.078
11154 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.01Δρmax = 0.22 e Å3
3048 reflectionsΔρmin = 0.21 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3269 (3)0.96011 (19)0.2888 (2)0.0449 (5)
C20.4940 (4)1.0491 (2)0.3639 (2)0.0522 (6)
H20.49181.08990.45100.063*
C30.6639 (4)1.0781 (2)0.3108 (3)0.0603 (6)
H30.77541.13930.36080.072*
C40.6651 (4)1.0152 (2)0.1836 (3)0.0579 (6)
C50.5006 (4)0.9293 (2)0.1057 (2)0.0587 (6)
H50.50450.88940.01860.070*
C60.3282 (4)0.9030 (2)0.1589 (2)0.0538 (6)
H60.21250.84670.10730.065*
C70.0960 (3)0.80999 (19)0.3412 (2)0.0434 (5)
C80.2048 (3)0.58337 (18)0.25944 (19)0.0371 (4)
C90.0095 (3)0.50477 (19)0.1946 (2)0.0414 (5)
H9A0.04490.51110.11450.050*
H9B0.11780.53820.24810.050*
C100.0005 (3)0.3639 (2)0.1715 (2)0.0484 (6)
H100.13710.31390.13150.058*
C110.0577 (4)0.3544 (2)0.2966 (3)0.0555 (6)
H11A0.06170.26540.28210.067*
H11B0.04820.38730.35210.067*
C120.2722 (4)0.4314 (2)0.3594 (3)0.0553 (6)
H120.30910.42420.43980.066*
C130.2620 (3)0.5721 (2)0.3845 (2)0.0479 (5)
H13A0.15720.60540.44070.057*
H13B0.39720.62210.42550.057*
C140.3707 (3)0.5295 (2)0.1712 (2)0.0467 (5)
H14A0.33510.53640.09140.056*
H14B0.50730.57890.20970.056*
C150.3806 (3)0.3894 (2)0.1469 (2)0.0524 (6)
H150.48800.35620.09120.063*
C160.1668 (3)0.3114 (2)0.0831 (3)0.0565 (6)
H16A0.17250.22190.06620.068*
H16B0.13050.31760.00300.068*
C170.4373 (3)0.3789 (2)0.2715 (3)0.0630 (7)
H17A0.57440.42690.31120.076*
H17B0.44430.28990.25630.076*
N10.1550 (3)0.92729 (17)0.34457 (19)0.0536 (5)
H10.08220.98730.38380.064*
N20.2119 (3)0.71831 (16)0.27757 (18)0.0471 (5)
H2A0.30690.74280.24100.057*
F10.8343 (3)1.04002 (17)0.12965 (18)0.0899 (6)
S10.10933 (9)0.78832 (5)0.41551 (6)0.0557 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0514 (11)0.0311 (10)0.0520 (14)0.0071 (8)0.0101 (10)0.0159 (9)
C20.0629 (13)0.0420 (12)0.0466 (13)0.0011 (10)0.0050 (11)0.0140 (10)
C30.0571 (13)0.0512 (14)0.0647 (17)0.0051 (11)0.0007 (12)0.0191 (12)
C40.0603 (14)0.0453 (12)0.0703 (17)0.0038 (10)0.0204 (12)0.0244 (12)
C50.0801 (16)0.0432 (12)0.0509 (15)0.0033 (11)0.0193 (13)0.0159 (11)
C60.0588 (13)0.0428 (12)0.0504 (14)0.0041 (10)0.0040 (11)0.0119 (11)
C70.0427 (10)0.0373 (11)0.0453 (13)0.0058 (8)0.0080 (9)0.0110 (9)
C80.0326 (9)0.0344 (10)0.0412 (12)0.0041 (7)0.0065 (8)0.0121 (8)
C90.0341 (9)0.0443 (11)0.0417 (12)0.0075 (8)0.0021 (8)0.0134 (9)
C100.0326 (10)0.0395 (11)0.0594 (15)0.0005 (8)0.0024 (9)0.0076 (10)
C110.0512 (12)0.0471 (12)0.0744 (17)0.0048 (10)0.0152 (12)0.0302 (12)
C120.0545 (13)0.0573 (14)0.0604 (15)0.0069 (10)0.0038 (11)0.0328 (12)
C130.0424 (11)0.0506 (13)0.0446 (13)0.0009 (9)0.0025 (10)0.0157 (10)
C140.0389 (10)0.0433 (11)0.0569 (14)0.0084 (8)0.0149 (10)0.0171 (10)
C150.0395 (11)0.0414 (11)0.0711 (17)0.0119 (9)0.0176 (11)0.0144 (11)
C160.0519 (12)0.0405 (12)0.0624 (16)0.0068 (10)0.0092 (11)0.0051 (11)
C170.0415 (12)0.0531 (14)0.098 (2)0.0128 (10)0.0018 (13)0.0353 (14)
N10.0594 (11)0.0350 (9)0.0655 (13)0.0110 (8)0.0234 (10)0.0158 (9)
N20.0465 (9)0.0376 (9)0.0614 (12)0.0091 (7)0.0235 (9)0.0207 (9)
F10.0811 (10)0.0808 (11)0.1042 (14)0.0079 (8)0.0415 (10)0.0320 (10)
S10.0505 (3)0.0416 (3)0.0672 (4)0.0066 (2)0.0261 (3)0.0106 (3)
Geometric parameters (Å, º) top
C1—C21.381 (3)C10—C161.533 (3)
C1—C61.383 (3)C10—H100.9800
C1—N11.421 (3)C11—C121.526 (3)
C2—C31.376 (3)C11—H11A0.9700
C2—H20.9300C11—H11B0.9700
C3—C41.359 (4)C12—C171.524 (3)
C3—H30.9300C12—C131.530 (3)
C4—F11.362 (3)C12—H120.9800
C4—C51.364 (4)C13—H13A0.9700
C5—C61.380 (3)C13—H13B0.9700
C5—H50.9300C14—C151.526 (3)
C6—H60.9300C14—H14A0.9700
C7—N21.345 (2)C14—H14B0.9700
C7—N11.351 (3)C15—C171.514 (4)
C7—S11.687 (2)C15—C161.527 (3)
C8—N21.473 (2)C15—H150.9800
C8—C131.524 (3)C16—H16A0.9700
C8—C141.533 (3)C16—H16B0.9700
C8—C91.535 (3)C17—H17A0.9700
C9—C101.537 (3)C17—H17B0.9700
C9—H9A0.9700N1—H10.8600
C9—H9B0.9700N2—H2A0.8600
C10—C111.514 (4)
C2—C1—C6119.4 (2)H11A—C11—H11B108.2
C2—C1—N1120.3 (2)C17—C12—C11109.3 (2)
C6—C1—N1120.3 (2)C17—C12—C13109.9 (2)
C3—C2—C1120.5 (2)C11—C12—C13109.09 (18)
C3—C2—H2119.7C17—C12—H12109.5
C1—C2—H2119.7C11—C12—H12109.5
C4—C3—C2118.5 (2)C13—C12—H12109.5
C4—C3—H3120.7C8—C13—C12109.58 (18)
C2—C3—H3120.7C8—C13—H13A109.8
C3—C4—F1119.4 (2)C12—C13—H13A109.8
C3—C4—C5122.7 (2)C8—C13—H13B109.8
F1—C4—C5117.8 (2)C12—C13—H13B109.8
C4—C5—C6118.5 (2)H13A—C13—H13B108.2
C4—C5—H5120.7C15—C14—C8110.05 (17)
C6—C5—H5120.7C15—C14—H14A109.7
C5—C6—C1120.2 (2)C8—C14—H14A109.7
C5—C6—H6119.9C15—C14—H14B109.7
C1—C6—H6119.9C8—C14—H14B109.7
N2—C7—N1115.40 (17)H14A—C14—H14B108.2
N2—C7—S1125.04 (16)C17—C15—C14109.59 (19)
N1—C7—S1119.56 (14)C17—C15—C16109.8 (2)
N2—C8—C13111.51 (17)C14—C15—C16109.42 (18)
N2—C8—C14105.19 (16)C17—C15—H15109.3
C13—C8—C14109.26 (17)C14—C15—H15109.3
N2—C8—C9112.54 (16)C16—C15—H15109.3
C13—C8—C9109.88 (16)C15—C16—C10108.83 (18)
C14—C8—C9108.27 (16)C15—C16—H16A109.9
C8—C9—C10109.31 (16)C10—C16—H16A109.9
C8—C9—H9A109.8C15—C16—H16B109.9
C10—C9—H9A109.8C10—C16—H16B109.9
C8—C9—H9B109.8H16A—C16—H16B108.3
C10—C9—H9B109.8C15—C17—C12109.70 (18)
H9A—C9—H9B108.3C15—C17—H17A109.7
C11—C10—C16109.86 (19)C12—C17—H17A109.7
C11—C10—C9109.71 (18)C15—C17—H17B109.7
C16—C10—C9109.11 (19)C12—C17—H17B109.7
C11—C10—H10109.4H17A—C17—H17B108.2
C16—C10—H10109.4C7—N1—C1125.69 (17)
C9—C10—H10109.4C7—N1—H1117.2
C10—C11—C12109.87 (19)C1—N1—H1117.2
C10—C11—H11A109.7C7—N2—C8131.37 (17)
C12—C11—H11A109.7C7—N2—H2A114.3
C10—C11—H11B109.7C8—N2—H2A114.3
C12—C11—H11B109.7
C6—C1—C2—C32.1 (3)C11—C12—C13—C860.2 (2)
N1—C1—C2—C3177.9 (2)N2—C8—C14—C15179.09 (18)
C1—C2—C3—C41.4 (4)C13—C8—C14—C1559.3 (2)
C2—C3—C4—F1178.3 (2)C9—C8—C14—C1560.4 (2)
C2—C3—C4—C53.3 (4)C8—C14—C15—C1759.6 (2)
C3—C4—C5—C61.6 (4)C8—C14—C15—C1660.8 (3)
F1—C4—C5—C6179.9 (2)C17—C15—C16—C1059.9 (2)
C4—C5—C6—C11.9 (4)C14—C15—C16—C1060.4 (3)
C2—C1—C6—C53.7 (3)C11—C10—C16—C1559.5 (3)
N1—C1—C6—C5176.2 (2)C9—C10—C16—C1560.9 (3)
N2—C8—C9—C10176.37 (17)C14—C15—C17—C1259.6 (2)
C13—C8—C9—C1058.7 (2)C16—C15—C17—C1260.6 (2)
C14—C8—C9—C1060.5 (2)C11—C12—C17—C1559.8 (3)
C8—C9—C10—C1159.0 (2)C13—C12—C17—C1559.8 (3)
C8—C9—C10—C1661.4 (2)N2—C7—N1—C10.8 (3)
C16—C10—C11—C1259.6 (2)S1—C7—N1—C1178.58 (18)
C9—C10—C11—C1260.3 (2)C2—C1—N1—C7117.2 (3)
C10—C11—C12—C1759.4 (2)C6—C1—N1—C762.7 (3)
C10—C11—C12—C1360.7 (2)N1—C7—N2—C8176.0 (2)
N2—C8—C13—C12174.86 (16)S1—C7—N2—C83.4 (4)
C14—C8—C13—C1259.0 (2)C13—C8—N2—C764.7 (3)
C9—C8—C13—C1259.6 (2)C14—C8—N2—C7177.0 (2)
C17—C12—C13—C859.6 (2)C9—C8—N2—C759.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.673.3939 (19)142
Symmetry code: (i) x, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC17H21FN2S
Mr304.42
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.4274 (5), 11.4727 (9), 11.5870 (9)
α, β, γ (°)113.510 (6), 94.721 (6), 94.837 (6)
V3)774.39 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.80 × 0.35 × 0.11
Data collection
DiffractometerStoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.847, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
11154, 3048, 2224
Rint0.078
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.118, 1.01
No. of reflections3048
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.21

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.673.3939 (19)142.3
Symmetry code: (i) x, y+2, z+1.
 

Acknowledgements

The authors thank Ondokuz Mayıs University Research Fund for financial support. The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, is greatly appreciated.

References

First citationAl-Abdullah, E. S., Asiri, H. H., El-Emam, A. & Ng, S. W. (2012). Acta Cryst. E68, o345.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAlmutairi, M. S., Al-Shehri, M. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o656.  CSD CrossRef IUCr Journals Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHunter, R., Younis, Y., Muhanji, C. I., Curtin, T. L., Naidoo, K. J., Petersen, M., Bailey, C. M., Basavapathruni, A. & Anderson, K. S. (2008). Bioorg. Med. Chem. 16, 10270–10280.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., Alanzi, A. M., El-Emam, A. A., Ng, S. W. & Tiekink, E. R. T. (2011). Acta Cryst. E67, o3127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLi, J., Tan, Z., Tang, S., Hewlett, I., Pang, R., He, M., He, S., Tian, B., Chen, K. & Yang, M. (2009). Bioorg. Med. Chem. 17, 3177–3188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationVernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1523
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds