organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1473

(1-Oxo-2,6,7-trioxa-1-phosphabi­cyclo­[2.2.2]octan-4-yl)methyl 4-methyl­benzene­sulfonate

aSchool of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province, 461000, People's Republic of China, and bDepartment of Biology and Chemistry, Jiaozuo Teachers' College, Jiaozuo, Henan Province, 454000, People's Republic of China
*Correspondence e-mail: hxfst@yahoo.com.cn

(Received 13 April 2012; accepted 17 April 2012; online 21 April 2012)

In the title compound, C12H15O7PS, the P atom has a distorted tetra­hedral environment. The P—O—C—C torsion angles deviate significantly from zero [average = 12.0 (3)°], indicating that the bicyclic OP(OCH2)3C cage is strained. In the crystal, weak C—H⋯O inter­actions consolidate the packing.

Related literature

For related structures, see: Miu et al. (1991[Miu, F. M., Liu, X. L., Li, Y. G., Wang, J. J., Liu, Y. S., Bao, J. C., Cao, J. H. & Zhou, W. (1991). Acta Chim. Sin. 49, 870-875.]); Sheng & He (2006[Sheng, X.-J. & He, H.-W. (2006). Acta Cryst. E62, o4398-o4399.]); Guo & Zang (2007[Guo, M.-L. & Zang, H.-J. (2007). Acta Cryst. E63, o1967-o1968.]). For applications of caged bicyclic phosphates and p-toluene­sulfonates, see: Li et al. (2000[Li, X., Ou, Y.-X., Zhang, Y.-H. & Lian, D.-J. (2000). Chin. Chem. Lett. 11, 887-890.]); Yachi et al. (1989[Yachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1-7.]); Spungin et al. (1992[Spungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992). FEBS Lett. 311, 155-160.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15O7PS

  • Mr = 334.27

  • Monoclinic, P 21 /c

  • a = 5.8884 (17) Å

  • b = 19.440 (5) Å

  • c = 12.469 (4) Å

  • β = 100.614 (4)°

  • V = 1402.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.929, Tmax = 0.956

  • 17318 measured reflections

  • 3353 independent reflections

  • 2808 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.03

  • 3353 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O5i 0.98 2.59 3.288 (2) 128
C8—H8A⋯O1ii 0.99 2.38 3.180 (2) 138
C10—H10A⋯O7iii 0.99 2.27 3.211 (2) 158
C10—H10B⋯O2iv 0.99 2.44 3.348 (2) 152
Symmetry codes: (i) x, y, z+1; (ii) x-1, y, z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

Caged bicyclic phosphates are widely used as flame retardants or pesticides (Li et al., 2000). They have been studied in the context of hydrogen-bond patterns (Guo & Zang, 2007). p-Toluenesulfonates are also used in monitoring the merging of lipids (Yachi et al., 1989), studying membrane fusion during acrosome reaction (Spungin et al., 1992). We report here the crystal structure of the title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in the related compounds (Miu et al., 1991; Sheng & He, 2006; Guo & Zang, 2007). The P—O—C—C torsion angles deviate significantly from zero [averaged -12.0 (3)°] indicating that bicyclic OP(OCH2)3C cage is strained. In the crystal, weak C—H···O interactions (Table 1) consolidate the packing.

Related literature top

For related structures, see: Miu et al. (1991); Sheng & He (2006); Guo & Zang (2007). For applications of caged bicyclic phosphates and p-toluenesulfonates, see: Li et al. (2000); Yachi et al. (1989); Spungin et al. (1992).

Experimental top

The title compound was obtained in the reaction of 4-(hydroxymethyl)-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octane 1-oxide (5 mmol) and 4-toluenesulfonyl chloride(4.7 mmol) in refluxing acetonitrile (50 ml). The solvent was evaporated in vacuo. The title compound was recrystallized from ethanol and single crystals of (I) were obtained by slow evaporation.

Refinement top

All H atoms were placed in calculated positions, with C—H = 0.95 - 0.99 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2-1.5 Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku/MSC, 2005); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids.
(1-Oxo-2,6,7-trioxa-1-phosphabicyclo[2.2.2]octan-4-yl)methyl 4-methylbenzenesulfonate top
Crystal data top
C12H15O7PSF(000) = 696
Mr = 334.27Dx = 1.583 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.8884 (17) ÅCell parameters from 4690 reflections
b = 19.440 (5) Åθ = 1.0–27.9°
c = 12.469 (4) ŵ = 0.38 mm1
β = 100.614 (4)°T = 113 K
V = 1402.8 (7) Å3Prism, colorless
Z = 40.20 × 0.18 × 0.12 mm
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3353 independent reflections
Radiation source: rotating anode2808 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.042
Detector resolution: 14.63 pixels mm-1θmax = 27.9°, θmin = 2.0°
ω and ϕ scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 2525
Tmin = 0.929, Tmax = 0.956l = 1616
17318 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.056P)2 + 0.0836P]
where P = (Fo2 + 2Fc2)/3
3353 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C12H15O7PSV = 1402.8 (7) Å3
Mr = 334.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.8884 (17) ŵ = 0.38 mm1
b = 19.440 (5) ÅT = 113 K
c = 12.469 (4) Å0.20 × 0.18 × 0.12 mm
β = 100.614 (4)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3353 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2808 reflections with I > 2σ(I)
Tmin = 0.929, Tmax = 0.956Rint = 0.042
17318 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 0.41 e Å3
3353 reflectionsΔρmin = 0.36 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.99063 (6)0.451050 (18)0.67038 (3)0.01842 (11)
P10.39289 (8)0.28254 (2)0.29030 (3)0.02821 (13)
O11.22894 (17)0.45267 (5)0.66257 (9)0.0236 (2)
O20.84692 (19)0.50895 (5)0.63399 (9)0.0278 (3)
O30.89302 (16)0.38603 (5)0.60079 (8)0.0214 (2)
O40.20805 (18)0.29396 (5)0.36462 (8)0.0237 (3)
O50.50318 (19)0.35557 (6)0.28262 (8)0.0312 (3)
O60.5883 (2)0.23944 (6)0.36336 (10)0.0380 (3)
O70.3039 (2)0.25143 (8)0.18528 (10)0.0495 (4)
C10.9609 (2)0.43084 (7)0.80401 (11)0.0181 (3)
C20.7696 (3)0.45395 (8)0.84399 (13)0.0244 (3)
H20.65350.48050.79940.029*
C30.7513 (3)0.43764 (8)0.95002 (13)0.0263 (3)
H30.62010.45300.97760.032*
C40.9193 (3)0.39949 (8)1.01712 (12)0.0237 (3)
C51.1086 (3)0.37578 (8)0.97464 (13)0.0261 (3)
H51.22370.34881.01910.031*
C61.1302 (3)0.39112 (8)0.86861 (12)0.0229 (3)
H61.25910.37480.84010.028*
C70.8998 (3)0.38445 (10)1.13373 (13)0.0340 (4)
H7A0.75250.40221.14800.051*
H7B1.02760.40671.18300.051*
H7C0.90680.33461.14600.051*
C80.6458 (2)0.37224 (9)0.58979 (12)0.0258 (4)
H8A0.56110.41570.59530.031*
H8B0.61760.34110.64880.031*
C90.5622 (2)0.33904 (7)0.47941 (11)0.0170 (3)
C100.2981 (2)0.33360 (8)0.46400 (11)0.0186 (3)
H10A0.25460.31060.52810.022*
H10B0.22940.38020.45800.022*
C110.6235 (3)0.38303 (8)0.38722 (12)0.0224 (3)
H11A0.57630.43130.39570.027*
H11B0.79250.38210.38980.027*
C120.6632 (3)0.26691 (8)0.47338 (13)0.0255 (3)
H12A0.83400.26900.49080.031*
H12B0.60960.23640.52730.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0172 (2)0.0208 (2)0.01733 (19)0.00029 (14)0.00335 (14)0.00003 (13)
P10.0281 (2)0.0345 (3)0.0219 (2)0.00056 (18)0.00434 (18)0.01078 (18)
O10.0179 (6)0.0302 (6)0.0238 (6)0.0038 (4)0.0065 (4)0.0001 (4)
O20.0312 (6)0.0268 (6)0.0249 (6)0.0084 (5)0.0036 (5)0.0044 (5)
O30.0144 (5)0.0287 (6)0.0210 (5)0.0011 (4)0.0032 (4)0.0062 (4)
O40.0219 (6)0.0286 (6)0.0199 (5)0.0056 (4)0.0022 (4)0.0036 (4)
O50.0316 (6)0.0469 (8)0.0159 (5)0.0085 (5)0.0063 (5)0.0038 (5)
O60.0359 (7)0.0306 (7)0.0440 (7)0.0096 (5)0.0019 (6)0.0168 (6)
O70.0439 (8)0.0701 (10)0.0329 (7)0.0012 (7)0.0026 (6)0.0301 (7)
C10.0176 (7)0.0202 (7)0.0164 (7)0.0015 (6)0.0029 (6)0.0019 (6)
C20.0186 (8)0.0310 (9)0.0234 (8)0.0028 (6)0.0032 (6)0.0026 (6)
C30.0214 (8)0.0332 (9)0.0267 (8)0.0017 (6)0.0105 (7)0.0058 (7)
C40.0277 (8)0.0230 (8)0.0212 (8)0.0085 (6)0.0064 (6)0.0037 (6)
C50.0294 (8)0.0260 (8)0.0225 (8)0.0035 (7)0.0040 (6)0.0037 (6)
C60.0207 (7)0.0259 (8)0.0227 (8)0.0041 (6)0.0053 (6)0.0003 (6)
C70.0434 (11)0.0379 (10)0.0231 (8)0.0095 (8)0.0128 (8)0.0014 (7)
C80.0160 (7)0.0417 (10)0.0204 (8)0.0065 (6)0.0051 (6)0.0080 (7)
C90.0167 (7)0.0192 (7)0.0158 (7)0.0011 (5)0.0044 (5)0.0004 (5)
C100.0179 (7)0.0240 (7)0.0143 (7)0.0017 (6)0.0036 (5)0.0009 (6)
C110.0227 (8)0.0244 (8)0.0212 (7)0.0049 (6)0.0072 (6)0.0018 (6)
C120.0226 (8)0.0227 (8)0.0297 (8)0.0029 (6)0.0006 (7)0.0013 (6)
Geometric parameters (Å, º) top
S1—O11.4248 (11)C4—C71.508 (2)
S1—O21.4309 (11)C5—C61.384 (2)
S1—O31.5803 (11)C5—H50.9500
S1—C11.7518 (15)C6—H60.9500
P1—O71.4499 (13)C7—H7A0.9800
P1—O41.5698 (11)C7—H7B0.9800
P1—O51.5714 (13)C7—H7C0.9800
P1—O61.5717 (13)C8—C91.5177 (19)
O3—C81.4617 (17)C8—H8A0.9900
O4—C101.4724 (16)C8—H8B0.9900
O5—C111.4654 (18)C9—C111.528 (2)
O6—C121.4623 (19)C9—C121.530 (2)
C1—C21.387 (2)C9—C101.5352 (19)
C1—C61.394 (2)C10—H10A0.9900
C2—C31.383 (2)C10—H10B0.9900
C2—H20.9500C11—H11A0.9900
C3—C41.387 (2)C11—H11B0.9900
C3—H30.9500C12—H12A0.9900
C4—C51.397 (2)C12—H12B0.9900
O1—S1—O2119.56 (7)C4—C7—H7B109.5
O1—S1—O3104.08 (6)H7A—C7—H7B109.5
O2—S1—O3108.73 (7)C4—C7—H7C109.5
O1—S1—C1110.02 (7)H7A—C7—H7C109.5
O2—S1—C1108.73 (7)H7B—C7—H7C109.5
O3—S1—C1104.64 (7)O3—C8—C9108.30 (11)
O7—P1—O4114.69 (7)O3—C8—H8A110.0
O7—P1—O5113.99 (8)C9—C8—H8A110.0
O4—P1—O5104.33 (6)O3—C8—H8B110.0
O7—P1—O6113.91 (8)C9—C8—H8B110.0
O4—P1—O6104.27 (7)H8A—C8—H8B108.4
O5—P1—O6104.49 (7)C8—C9—C11111.23 (12)
C8—O3—S1116.97 (9)C8—C9—C12111.73 (12)
C10—O4—P1112.92 (8)C11—C9—C12109.15 (12)
C11—O5—P1114.35 (9)C8—C9—C10107.13 (11)
C12—O6—P1114.27 (9)C11—C9—C10108.58 (12)
C2—C1—C6120.88 (14)C12—C9—C10108.94 (12)
C2—C1—S1119.94 (11)O4—C10—C9109.93 (11)
C6—C1—S1119.18 (11)O4—C10—H10A109.7
C3—C2—C1118.73 (14)C9—C10—H10A109.7
C3—C2—H2120.6O4—C10—H10B109.7
C1—C2—H2120.6C9—C10—H10B109.7
C2—C3—C4121.78 (15)H10A—C10—H10B108.2
C2—C3—H3119.1O5—C11—C9108.85 (12)
C4—C3—H3119.1O5—C11—H11A109.9
C3—C4—C5118.54 (14)C9—C11—H11A109.9
C3—C4—C7120.85 (15)O5—C11—H11B109.9
C5—C4—C7120.60 (15)C9—C11—H11B109.9
C6—C5—C4120.75 (15)H11A—C11—H11B108.3
C6—C5—H5119.6O6—C12—C9109.14 (12)
C4—C5—H5119.6O6—C12—H12A109.9
C5—C6—C1119.30 (14)C9—C12—H12A109.9
C5—C6—H6120.4O6—C12—H12B109.9
C1—C6—H6120.4C9—C12—H12B109.9
C4—C7—H7A109.5H12A—C12—H12B108.3
O1—S1—O3—C8177.65 (10)C2—C3—C4—C7177.82 (15)
O2—S1—O3—C849.18 (12)C3—C4—C5—C61.2 (2)
C1—S1—O3—C866.86 (11)C7—C4—C5—C6178.19 (15)
O7—P1—O4—C10172.57 (10)C4—C5—C6—C10.1 (2)
O5—P1—O4—C1047.17 (10)C2—C1—C6—C51.2 (2)
O6—P1—O4—C1062.18 (11)S1—C1—C6—C5179.22 (12)
O7—P1—O5—C11171.46 (10)S1—O3—C8—C9148.31 (10)
O4—P1—O5—C1162.71 (11)O3—C8—C9—C1154.43 (17)
O6—P1—O5—C1146.49 (11)O3—C8—C9—C1267.82 (16)
O7—P1—O6—C12174.29 (11)O3—C8—C9—C10172.94 (12)
O4—P1—O6—C1248.55 (12)P1—O4—C10—C912.41 (14)
O5—P1—O6—C1260.69 (12)C8—C9—C10—O4172.94 (12)
O1—S1—C1—C2152.36 (12)C11—C9—C10—O466.84 (15)
O2—S1—C1—C219.67 (15)C12—C9—C10—O451.92 (15)
O3—S1—C1—C296.37 (13)P1—O5—C11—C912.39 (15)
O1—S1—C1—C628.07 (14)C8—C9—C11—O5169.66 (12)
O2—S1—C1—C6160.76 (12)C12—C9—C11—O566.61 (15)
O3—S1—C1—C683.21 (13)C10—C9—C11—O552.01 (15)
C6—C1—C2—C30.9 (2)P1—O6—C12—C911.31 (16)
S1—C1—C2—C3179.56 (12)C8—C9—C12—O6176.46 (12)
C1—C2—C3—C40.6 (2)C11—C9—C12—O653.03 (16)
C2—C3—C4—C51.6 (2)C10—C9—C12—O665.37 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O5i0.982.593.288 (2)128
C8—H8A···O1ii0.992.383.180 (2)138
C10—H10A···O7iii0.992.273.211 (2)158
C10—H10B···O2iv0.992.443.348 (2)152
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H15O7PS
Mr334.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)5.8884 (17), 19.440 (5), 12.469 (4)
β (°) 100.614 (4)
V3)1402.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.929, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
17318, 3353, 2808
Rint0.042
(sin θ/λ)max1)0.657
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.03
No. of reflections3353
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.36

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O5i0.982.593.288 (2)128
C8—H8A···O1ii0.992.383.180 (2)138
C10—H10A···O7iii0.992.273.211 (2)158
C10—H10B···O2iv0.992.443.348 (2)152
Symmetry codes: (i) x, y, z+1; (ii) x1, y, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Henan Province, China (grant No. 082300420110) and the Natural Science Foundation of Henan Province Education Department, China (grant No. 2007150036).

References

First citationGuo, M.-L. & Zang, H.-J. (2007). Acta Cryst. E63, o1967–o1968.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, X., Ou, Y.-X., Zhang, Y.-H. & Lian, D.-J. (2000). Chin. Chem. Lett. 11, 887–890.  CAS Google Scholar
First citationMiu, F. M., Liu, X. L., Li, Y. G., Wang, J. J., Liu, Y. S., Bao, J. C., Cao, J. H. & Zhou, W. (1991). Acta Chim. Sin. 49, 870–875.  Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheng, X.-J. & He, H.-W. (2006). Acta Cryst. E62, o4398–o4399.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpungin, B., Levinshal, T., Rubenstein, S. & Breitbart, H. (1992). FEBS Lett. 311, 155–160.  CrossRef PubMed CAS Web of Science Google Scholar
First citationYachi, K., Sugiyama, Y., Sawada, Y., Iga, T., Ikeda, Y., Toda, G. & Hanano, M. (1989). Biochim. Biophys. Acta, 978, 1–7.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1473
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds