organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1536

1-(4-Chloro­butano­yl)-3-(2-chloro­phen­yl)thio­urea

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Menggabang Telipot, 21030 Kuala Terengganu, Malaysia, bSchool of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM 43600 Bangi Selangor, Malaysia, and cKulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
*Correspondence e-mail: nurziana@iium.edu.my

(Received 13 April 2012; accepted 20 April 2012; online 25 April 2012)

The asymmetric unit of the title compound, C11H12Cl2N2OS, contains two crystallographically independent mol­ecules with different conformations: the benzene ring and the thio­urea fragment form dihedral angles of 74.32 (11) and 89.39 (11)°. One amino group in each mol­ecule is involved in intra­molecular N—H⋯O and inter­molecular N—H⋯O hydrogen bonding: the latter links pairs of independent mol­ecules into dimers. In the crystal, weak N—H⋯S inter­actions link these dimers into chains propagating along the c axis.

Related literature

For a related structure, see: Yusof et al. (2011[Yusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12Cl2N2OS

  • Mr = 291.19

  • Monoclinic, P 21 /c

  • a = 14.396 (3) Å

  • b = 10.941 (2) Å

  • c = 18.093 (4) Å

  • β = 109.399 (4)°

  • V = 2688.0 (9) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.62 mm−1

  • T = 298 K

  • 0.42 × 0.41 × 0.39 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.780, Tmax = 0.793

  • 14457 measured reflections

  • 4727 independent reflections

  • 3802 reflections with I > 2/s(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.03

  • 4727 reflections

  • 307 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.86 2.01 2.675 (3) 133
N3—H3A⋯O2 0.86 1.98 2.652 (3) 134
N1—H1A⋯O2 0.86 2.37 3.070 (3) 138
N3—H3A⋯O1 0.86 2.37 3.073 (3) 139
N2—H2A⋯S2i 0.86 2.58 3.404 (2) 160
N4—H4A⋯S1ii 0.86 2.58 3.433 (2) 174
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The asymmetric unit of the title compound, (I), contains two crystallographically independent molecules with different conformations. The title molecule is similiar to the previously reported N-(4-chlorobutanoyl)- N'-(2-fluorophenyl)thiourea (Yusof et al., 2011) except the fluorine atom at ortho position of benzene ring is substituted by the chlorine atom at the same position. The bond lengths and angles are in normal ranges (Allen et al., 1987). The benzene [(C1—C6) & (C12—C17)] and thiourea [(N1/N2/C7/S1/C6) & (N3/N4/C18/S2/C17)] fragments are each planar with maximum deviation is 0.047 (2) Å for atom N4 from the mean plane. In each independent molecule, the benzene and thiourea fragments make dihedral angles of 74.32 (11)° and 89.39 (11)°, respectively and comparable to those reported by Yusof et al., (2011). One amino group in each molecule, N1—H1A and N3—H3A, respectively, is involved in bifurcated N—H···O hydrogen-bonding (Table 1) - intra and intermolecular ones, respectively, and the latter ones link two independent molecules into dimer. In the crystal, weak N—H···S interactions (Table 1) link further these dimers into chains propagated along c axis.

Related literature top

For a related structure, see: Yusof et al. (2011). For bond-length data, see: Allen et al. (1987).

Experimental top

30 ml Acetone solution of 2-chloroanaline (1.81 g, 14.29 mmol) were added into a round-bottom flask containing a solution of 4-chlorobutanoylchloride (2.00 g, 14.29 mmol) and ammonium thiocyanate (1.10 g, 14.29 mmol). The solution mixture was refluxed for 2.5 h then filtered off and left to evaporate at room temperature. The yellowish precipitate obtained was washed with water and cold ethanol. The yellowish crystals suitable for X-ray analysis were obtained by recrystallization of the precipitate in DMF.

Refinement top

All H atoms were positioned geometrically [C—H 0.93–0.97 Å; N—H 0.86 Å], and refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering and 40% probability displacement ellipsoids. Dashed lines denote hydrogen bonds.
[Figure 2] Fig. 2. The molecular packing viewed down the b axis. Dashed lines denote N—H···S interactions.
1-(4-Chlorobutanoyl)-3-(2-chlorophenyl)thiourea top
Crystal data top
C11H12Cl2N2OSF(000) = 1200
Mr = 291.19Dx = 1.439 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6026 reflections
a = 14.396 (3) Åθ = 1.5–25.0°
b = 10.941 (2) ŵ = 0.62 mm1
c = 18.093 (4) ÅT = 298 K
β = 109.399 (4)°Block, yellow
V = 2688.0 (9) Å30.42 × 0.41 × 0.39 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4727 independent reflections
Radiation source: fine-focus sealed tube3802 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 83.66 pixels mm-1θmax = 25.0°, θmin = 1.5°
ω scanh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1312
Tmin = 0.780, Tmax = 0.793l = 1621
14457 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0514P)2 + 1.5167P]
where P = (Fo2 + 2Fc2)/3
4727 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C11H12Cl2N2OSV = 2688.0 (9) Å3
Mr = 291.19Z = 8
Monoclinic, P21/cMo Kα radiation
a = 14.396 (3) ŵ = 0.62 mm1
b = 10.941 (2) ÅT = 298 K
c = 18.093 (4) Å0.42 × 0.41 × 0.39 mm
β = 109.399 (4)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4727 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3802 reflections with I > 2σ(I)
Tmin = 0.780, Tmax = 0.793Rint = 0.023
14457 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.03Δρmax = 0.40 e Å3
4727 reflectionsΔρmin = 0.33 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.02869 (4)0.00674 (6)0.33632 (3)0.04643 (17)
S20.23770 (4)0.49698 (6)0.02320 (4)0.04616 (17)
Cl10.08277 (6)0.17066 (6)0.15579 (5)0.0684 (2)
Cl20.52142 (7)0.18550 (11)0.47501 (6)0.1086 (4)
Cl30.38361 (6)0.18324 (8)0.09743 (5)0.0738 (2)
Cl40.23405 (6)0.18796 (9)0.20368 (5)0.0792 (3)
O10.20202 (12)0.12434 (18)0.23359 (10)0.0555 (5)
O20.05946 (12)0.18451 (16)0.07274 (10)0.0543 (5)
N10.01342 (13)0.07137 (17)0.21195 (10)0.0385 (4)
H1A0.05620.09160.19040.046*
N20.14546 (13)0.04033 (17)0.32535 (11)0.0400 (4)
H2A0.16480.01140.37220.048*
N30.21846 (13)0.32495 (18)0.11973 (11)0.0430 (5)
H3A0.18520.26700.13110.052*
N40.08539 (13)0.35124 (17)0.00731 (11)0.0382 (4)
H4A0.05850.39570.03340.046*
C10.14018 (18)0.0300 (2)0.13660 (14)0.0450 (6)
C20.2387 (2)0.0240 (3)0.09106 (16)0.0620 (8)
H20.27400.09520.07240.074*
C30.2839 (2)0.0878 (3)0.07364 (18)0.0734 (9)
H30.35000.09210.04310.088*
C40.2326 (2)0.1928 (3)0.10078 (19)0.0683 (8)
H40.26360.26820.08780.082*
C50.13441 (19)0.1870 (2)0.14771 (16)0.0540 (6)
H50.09970.25840.16690.065*
C60.08857 (16)0.0750 (2)0.16572 (13)0.0394 (5)
C70.04504 (15)0.03795 (19)0.28697 (13)0.0358 (5)
C80.21855 (16)0.0824 (2)0.29900 (14)0.0437 (5)
C90.31985 (18)0.0696 (3)0.35824 (16)0.0608 (7)
H9A0.32190.11280.40560.073*
H9B0.33220.01610.37150.073*
C100.39933 (19)0.1170 (3)0.33112 (17)0.0644 (8)
H10A0.38850.20360.32000.077*
H10B0.39550.07640.28250.077*
C110.5010 (2)0.0994 (4)0.38907 (18)0.0743 (9)
H11A0.54910.12260.36470.089*
H11B0.51070.01350.40270.089*
C120.39626 (18)0.2933 (2)0.16893 (14)0.0487 (6)
C130.48814 (19)0.3193 (3)0.22162 (17)0.0610 (7)
H130.54370.27950.21830.073*
C140.4967 (2)0.4046 (3)0.27902 (18)0.0690 (8)
H140.55840.42230.31490.083*
C150.4150 (2)0.4644 (3)0.28422 (18)0.0700 (8)
H150.42170.52190.32350.084*
C160.32314 (19)0.4390 (3)0.23107 (16)0.0562 (7)
H160.26790.47980.23430.067*
C170.31345 (16)0.3533 (2)0.17331 (13)0.0435 (6)
C180.17954 (15)0.3847 (2)0.05298 (12)0.0355 (5)
C190.02925 (16)0.2559 (2)0.01862 (13)0.0398 (5)
C200.07275 (16)0.2507 (2)0.03992 (15)0.0455 (6)
H20A0.07230.28840.08830.055*
H20B0.11650.29790.02020.055*
C210.11259 (18)0.1228 (2)0.05729 (15)0.0527 (6)
H21A0.10750.08220.00840.063*
H21B0.07260.07760.08170.063*
C220.2184 (2)0.1201 (3)0.11039 (17)0.0689 (8)
H22A0.25880.16360.08540.083*
H22B0.24100.03600.11800.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0392 (3)0.0612 (4)0.0382 (3)0.0085 (3)0.0118 (3)0.0020 (3)
S20.0413 (3)0.0525 (4)0.0396 (3)0.0108 (3)0.0067 (3)0.0051 (3)
Cl10.0886 (5)0.0397 (4)0.0721 (5)0.0045 (3)0.0203 (4)0.0071 (3)
Cl20.0732 (6)0.1360 (9)0.0916 (7)0.0178 (6)0.0060 (5)0.0378 (6)
Cl30.0698 (5)0.0801 (5)0.0665 (5)0.0138 (4)0.0159 (4)0.0065 (4)
Cl40.0651 (5)0.0973 (6)0.0554 (4)0.0125 (4)0.0066 (4)0.0048 (4)
O10.0387 (9)0.0765 (12)0.0466 (10)0.0065 (9)0.0076 (8)0.0167 (9)
O20.0442 (9)0.0552 (10)0.0505 (10)0.0112 (8)0.0018 (8)0.0148 (9)
N10.0307 (9)0.0449 (11)0.0362 (10)0.0047 (8)0.0062 (8)0.0032 (8)
N20.0336 (10)0.0486 (11)0.0332 (10)0.0001 (8)0.0050 (8)0.0053 (8)
N30.0321 (10)0.0524 (12)0.0382 (10)0.0086 (8)0.0031 (8)0.0081 (9)
N40.0333 (9)0.0435 (10)0.0326 (9)0.0016 (8)0.0039 (8)0.0036 (8)
C10.0467 (13)0.0463 (13)0.0381 (13)0.0081 (11)0.0089 (11)0.0007 (10)
C20.0508 (15)0.077 (2)0.0480 (15)0.0241 (15)0.0033 (13)0.0025 (14)
C30.0405 (15)0.104 (3)0.0628 (19)0.0010 (17)0.0006 (13)0.0162 (18)
C40.0504 (16)0.073 (2)0.072 (2)0.0178 (15)0.0067 (15)0.0119 (16)
C50.0520 (15)0.0462 (14)0.0574 (16)0.0027 (12)0.0095 (13)0.0021 (12)
C60.0350 (11)0.0460 (13)0.0337 (11)0.0014 (10)0.0066 (9)0.0044 (10)
C70.0345 (11)0.0316 (11)0.0374 (12)0.0011 (9)0.0067 (9)0.0026 (9)
C80.0360 (12)0.0510 (14)0.0399 (13)0.0020 (10)0.0071 (10)0.0040 (11)
C90.0411 (14)0.087 (2)0.0479 (15)0.0073 (14)0.0059 (12)0.0124 (14)
C100.0419 (14)0.093 (2)0.0562 (17)0.0013 (14)0.0129 (13)0.0058 (16)
C110.0378 (14)0.113 (3)0.0657 (19)0.0026 (16)0.0092 (13)0.0008 (18)
C120.0416 (13)0.0552 (15)0.0441 (14)0.0034 (11)0.0074 (11)0.0109 (11)
C130.0343 (13)0.0751 (19)0.0650 (18)0.0009 (13)0.0049 (12)0.0169 (16)
C140.0412 (15)0.084 (2)0.0635 (19)0.0182 (15)0.0068 (13)0.0083 (17)
C150.0652 (19)0.075 (2)0.0554 (18)0.0198 (16)0.0008 (15)0.0108 (15)
C160.0448 (14)0.0633 (17)0.0530 (16)0.0035 (12)0.0065 (12)0.0016 (13)
C170.0339 (12)0.0532 (14)0.0364 (12)0.0063 (10)0.0024 (10)0.0096 (11)
C180.0302 (10)0.0407 (12)0.0327 (11)0.0019 (9)0.0066 (9)0.0030 (9)
C190.0346 (11)0.0408 (12)0.0403 (13)0.0014 (10)0.0073 (10)0.0017 (10)
C200.0321 (11)0.0481 (14)0.0492 (14)0.0023 (10)0.0041 (10)0.0025 (11)
C210.0456 (14)0.0565 (15)0.0486 (15)0.0126 (12)0.0058 (12)0.0036 (12)
C220.0501 (16)0.089 (2)0.0587 (17)0.0276 (15)0.0064 (13)0.0009 (16)
Geometric parameters (Å, º) top
S1—C71.671 (2)C5—H50.9300
S2—C181.673 (2)C8—C91.502 (3)
Cl1—C11.727 (3)C9—C101.481 (4)
Cl2—C111.758 (3)C9—H9A0.9700
Cl3—C121.732 (3)C9—H9B0.9700
Cl4—C221.788 (3)C10—C111.504 (4)
O1—C81.217 (3)C10—H10A0.9700
O2—C191.215 (3)C10—H10B0.9700
N1—C71.332 (3)C11—H11A0.9700
N1—C61.429 (3)C11—H11B0.9700
N1—H1A0.8600C12—C131.379 (4)
N2—C81.371 (3)C12—C171.386 (3)
N2—C71.381 (3)C13—C141.371 (4)
N2—H2A0.8600C13—H130.9300
N3—C181.323 (3)C14—C151.375 (5)
N3—C171.423 (3)C14—H140.9300
N3—H3A0.8600C15—C161.381 (4)
N4—C191.376 (3)C15—H150.9300
N4—C181.382 (3)C16—C171.377 (4)
N4—H4A0.8600C16—H160.9300
C1—C61.374 (3)C19—C201.499 (3)
C1—C21.385 (4)C20—C211.505 (4)
C2—C31.371 (5)C20—H20A0.9700
C2—H20.9300C20—H20B0.9700
C3—C41.365 (5)C21—C221.507 (4)
C3—H30.9300C21—H21A0.9700
C4—C51.388 (4)C21—H21B0.9700
C4—H40.9300C22—H22A0.9700
C5—C61.379 (3)C22—H22B0.9700
C7—N1—C6122.78 (18)C10—C11—Cl2112.7 (2)
C7—N1—H1A118.6C10—C11—H11A109.1
C6—N1—H1A118.6Cl2—C11—H11A109.1
C8—N2—C7128.89 (19)C10—C11—H11B109.1
C8—N2—H2A115.6Cl2—C11—H11B109.1
C7—N2—H2A115.6H11A—C11—H11B107.8
C18—N3—C17122.27 (19)C13—C12—C17120.6 (3)
C18—N3—H3A118.9C13—C12—Cl3119.9 (2)
C17—N3—H3A118.9C17—C12—Cl3119.53 (19)
C19—N4—C18128.30 (19)C14—C13—C12119.2 (3)
C19—N4—H4A115.8C14—C13—H13120.4
C18—N4—H4A115.8C12—C13—H13120.4
C6—C1—C2120.3 (2)C13—C14—C15120.8 (3)
C6—C1—Cl1120.41 (18)C13—C14—H14119.6
C2—C1—Cl1119.3 (2)C15—C14—H14119.6
C3—C2—C1119.5 (3)C14—C15—C16120.0 (3)
C3—C2—H2120.3C14—C15—H15120.0
C1—C2—H2120.3C16—C15—H15120.0
C4—C3—C2120.6 (3)C17—C16—C15119.9 (3)
C4—C3—H3119.7C17—C16—H16120.1
C2—C3—H3119.7C15—C16—H16120.1
C3—C4—C5120.1 (3)C16—C17—C12119.6 (2)
C3—C4—H4120.0C16—C17—N3119.9 (2)
C5—C4—H4120.0C12—C17—N3120.5 (2)
C6—C5—C4119.7 (3)N3—C18—N4116.67 (19)
C6—C5—H5120.2N3—C18—S2123.45 (16)
C4—C5—H5120.2N4—C18—S2119.88 (16)
C1—C6—C5119.8 (2)O2—C19—N4122.5 (2)
C1—C6—N1121.4 (2)O2—C19—C20123.3 (2)
C5—C6—N1118.8 (2)N4—C19—C20114.20 (19)
N1—C7—N2116.99 (19)C19—C20—C21113.5 (2)
N1—C7—S1124.22 (16)C19—C20—H20A108.9
N2—C7—S1118.80 (16)C21—C20—H20A108.9
O1—C8—N2122.7 (2)C19—C20—H20B108.9
O1—C8—C9124.0 (2)C21—C20—H20B108.9
N2—C8—C9113.3 (2)H20A—C20—H20B107.7
C10—C9—C8113.9 (2)C20—C21—C22112.7 (2)
C10—C9—H9A108.8C20—C21—H21A109.1
C8—C9—H9A108.8C22—C21—H21A109.1
C10—C9—H9B108.8C20—C21—H21B109.1
C8—C9—H9B108.8C22—C21—H21B109.1
H9A—C9—H9B107.7H21A—C21—H21B107.8
C9—C10—C11113.9 (2)C21—C22—Cl4112.16 (19)
C9—C10—H10A108.8C21—C22—H22A109.2
C11—C10—H10A108.8Cl4—C22—H22A109.2
C9—C10—H10B108.8C21—C22—H22B109.2
C11—C10—H10B108.8Cl4—C22—H22B109.2
H10A—C10—H10B107.7H22A—C22—H22B107.9
C6—C1—C2—C31.5 (4)C17—C12—C13—C140.6 (4)
Cl1—C1—C2—C3178.0 (2)Cl3—C12—C13—C14178.5 (2)
C1—C2—C3—C40.0 (5)C12—C13—C14—C150.3 (4)
C2—C3—C4—C51.2 (5)C13—C14—C15—C160.2 (5)
C3—C4—C5—C61.0 (5)C14—C15—C16—C170.5 (5)
C2—C1—C6—C51.8 (4)C15—C16—C17—C120.2 (4)
Cl1—C1—C6—C5177.8 (2)C15—C16—C17—N3178.4 (2)
C2—C1—C6—N1179.2 (2)C13—C12—C17—C160.4 (4)
Cl1—C1—C6—N10.4 (3)Cl3—C12—C17—C16178.7 (2)
C4—C5—C6—C10.5 (4)C13—C12—C17—N3179.0 (2)
C4—C5—C6—N1178.0 (2)Cl3—C12—C17—N30.1 (3)
C7—N1—C6—C176.9 (3)C18—N3—C17—C1689.7 (3)
C7—N1—C6—C5105.7 (3)C18—N3—C17—C1291.7 (3)
C6—N1—C7—N2178.95 (19)C17—N3—C18—N4177.8 (2)
C6—N1—C7—S11.4 (3)C17—N3—C18—S21.4 (3)
C8—N2—C7—N16.1 (3)C19—N4—C18—N36.3 (3)
C8—N2—C7—S1174.26 (19)C19—N4—C18—S2174.38 (18)
C7—N2—C8—O10.9 (4)C18—N4—C19—O21.8 (4)
C7—N2—C8—C9180.0 (2)C18—N4—C19—C20176.4 (2)
O1—C8—C9—C102.1 (4)O2—C19—C20—C2133.5 (3)
N2—C8—C9—C10178.8 (3)N4—C19—C20—C21148.3 (2)
C8—C9—C10—C11177.6 (3)C19—C20—C21—C22174.7 (2)
C9—C10—C11—Cl266.2 (4)C20—C21—C22—Cl461.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.012.675 (3)133
N3—H3A···O20.861.982.652 (3)134
N1—H1A···O20.862.373.070 (3)138
N3—H3A···O10.862.373.073 (3)139
N2—H2A···S2i0.862.583.404 (2)160
N4—H4A···S1ii0.862.583.433 (2)174
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC11H12Cl2N2OS
Mr291.19
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.396 (3), 10.941 (2), 18.093 (4)
β (°) 109.399 (4)
V3)2688.0 (9)
Z8
Radiation typeMo Kα
µ (mm1)0.62
Crystal size (mm)0.42 × 0.41 × 0.39
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.780, 0.793
No. of measured, independent and
observed [I > 2σ(I)] reflections
14457, 4727, 3802
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.109, 1.03
No. of reflections4727
No. of parameters307
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.40, 0.33

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.862.012.675 (3)133
N3—H3A···O20.861.982.652 (3)134
N1—H1A···O20.862.373.070 (3)138
N3—H3A···O10.862.373.073 (3)139
N2—H2A···S2i0.862.583.404 (2)160
N4—H4A···S1ii0.862.583.433 (2)174
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z1/2.
 

Acknowledgements

MSMY, BMY and NN acknowledge Universiti Malaysia Terengganu, Universiti Kebangsaan Malaysia and the Inter­national Islamic University Malaysia for facilities and funding to support the synthetic part of this work.

References

First citationAllen, F. H., Kennard, O., watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusof, M. S. M., Embong, N. F., Othman, E. A. & Yamin, B. M. (2011). Acta Cryst. E67, o1849.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1536
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds