metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[chloridodi­methanol(μ3-pyridine-2,3-di­carboxyl­ato)europium(III)] methanol monosolvate]

aSchool of Chemistry and Chemical Engineering, Anqing Teachers College, Anqing 246011, People's Republic of China
*Correspondence e-mail: wudayu_nju@yahoo.com.cn

(Received 10 March 2012; accepted 21 April 2012; online 28 April 2012)

The asymmetric unit of the title compound, {[Eu(C7H3NO4)Cl(CH3OH)2]·CH3OH}n, contains one EuIII ion, one pyridine 2,3-dicarboxylate dianion (PDC), two CH3OH mol­ecules coordinating to the metal atom, one coordinating chloride and one lattice occluded CH3OH mol­ecule. In the crystal, each PDC anion coordinates to three adjacent EuIII ions by the pyridine N and O atoms of the carboxyl­ate groups. The EuIII cation is eightfold coordinated by four carboxyl­ate O atoms, one pyridine N atom, two MeOH and one chloride anion in the form of a distorted polyhedron. Extended coordination of the PDC ligand lead to the formation of a two-dimensional coordination polymer parallel to (10-1).

Related literature

For related work on pyridine-carboxyl­ate transition-metal compounds, see: Swamy et al. (1998[Swamy, G. Y. S. K., Chandramohan, K., Lakshmi, N. V. & Ravikumar, K. (1998). Z. Kristallogr. 213, 191-193.]); Zhong et al. (1994[Zhong, Z. J., You, X. Z. & Yang, Q. C. (1994). Polyhedron, 13, 1951-1954.]); Zhang et al. (2003[Zhang, X. M., Wu, H. S. & Chen, X. M. (2003). Eur. J. Inorg. Chem. pp. 2959-2961.]); Wu et al. (2003[Wu, B. L., Zhang, H. Q., Zhang, H. Y., Wu, Q. A., Hou, H. W., Zhu, Y. & Wang, X. Y. (2003). Aust. J. Chem. 56, 335-338.]); Tong et al. (2000[Tong, M. L., Yang, G. & Chen, X. M. (2000). Aust. J. Chem. 53, 607-612.]). For work on lanthanide compounds, see, for example: Zhao et al. (2004[Zhao, B., Chen, X.-Y., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 126, 15394-15395.]).

[Scheme 1]

Experimental

Crystal data
  • [Eu(C7H3NO4)Cl(CH4O)2]·CH4O

  • Mr = 448.64

  • Monoclinic, P 21 /n

  • a = 10.4870 (3) Å

  • b = 10.9123 (3) Å

  • c = 12.9248 (3) Å

  • β = 99.694 (2)°

  • V = 1457.96 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.51 mm−1

  • T = 150 K

  • 0.20 × 0.15 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.448, Tmax = 0.532

  • 7658 measured reflections

  • 2550 independent reflections

  • 2260 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.057

  • S = 1.02

  • 2550 reflections

  • 184 parameters

  • H-atom parameters constrained

  • Δρmax = 1.34 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Selected bond lengths (Å)

Eu1—O3i 2.344 (3)
Eu1—O4 2.346 (3)
Eu1—O2 2.354 (3)
Eu1—O1ii 2.373 (3)
Eu1—O5 2.450 (3)
Eu1—O6 2.490 (3)
Eu1—N1i 2.655 (3)
Eu1—Cl1 2.7723 (11)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The pyridine dicarboxylic acid (H2pydc) is a diverse bridging ligand and has drawn some attention in photochemistry and crystal engineering. In case of pyridine-2,3-dicarboxylate functional groups, pydc exhibits bis(monodentate) (Swamy et al.,1998), tridentate(Zhong et al., 1994; Zhang et al., 2003), bis(bidentate) (Wu et al., 2003; Tong et al., 2000) coordination modes to form a few transition metal coordination polymers. It should display high reactivity to the lanthanide, since the oxygen atom of carboxylate group has a strong affinity to Ln3+ ions (Zhao et al.,2004). In this work, we selected pyridine-2,3-dicarboxylate and lanthanide ions to assemble coordination polymer under hydrothermal conditions, forming two-dimensional network structures. As depicted in Figure 1, the asymmetric unit contains one europium ion, one deprotonated pyridine 2,3-dicarboxylate ligand (PDC), two CH3OH molecules coordinated to the metal center, one coordinated chloride and one lattice occluded CH3OH molecule. In the crystal structure, each PDC ligand coordinates to three adjacent Eu ions by the pyridyl N and O atoms of the carboxylate moieties. Eu is coordinated by four O atoms of carboxylate, one pyridyl N, two MeOH and one chloride dispaying eight-coordinated environment with average Eu—O bond length of being 2.3825 Å, obviously shorter than that of Eu—Cl 2.7724 Å (Table 1). Extended coordination of PDC ligand lead to the formation of a 2D coordination polymer (Figure 2). π···π stacking interactions were found to stabilize two-dimensional structure with the shortest carbon···carbon distance of 3.487 Å in the plan.

Related literature top

For related work on pyridine-carboxylate transition-metal compounds, see: Swamy et al. (1998); Zhong et al. (1994); Zhang et al. (2003); Wu et al. (2003); Tong et al. (2000). For work on lanthanide compounds, see, for example: Zhao et al. (2004).

Experimental top

A mixture of EuCl3.6H2O (0.037 g, 0.1 mmol), H2pydc (0.017 g, 0.1 mmol) in 8 mL H2O was stirred at room temperature for 30 min, the solution was put into a 25 mL Teflon-lined stainless-steel container, heated to 165 oC and maintained for 48 h, and then cooled to room temperature in 45 h. The colorless block crystal was obtained by filtration, washed with water and ethanol in 67% yield (based on Eu). Anal. Calc. for C10 H15 Cl Eu N O7 : C, 26.77; H, 3.37; N, 3.12. Found: C, 27.05; H, 3.47; N, 3.16%. IR (KBr pellet): 3407(m), 1698(m), 1594(s), 1565(s), 1442(m), 1381(s), 1254(m), 1095(m), 758(m) cm-1.

Refinement top

C-bound H atoms were placed geometrically and allowed to ride during refinement with C—H = 0.93–0.96 Å with Uiso(H) = 1.2 Ueq(C). The hydroxy H atom of the methanol solvent molecule was located in a difference Fourier map and refined as riding with the parent atom with Uiso(H) = 1.5Ueq(O), O—H distances 0.82 and 0.85 Å.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, the thermal ellipsoids were drawn at 50% probability level.
[Figure 2] Fig. 2. The 2-D packing structure of the title compound.
Poly[[chloridodimethanol(µ3-pyridine-2,3-dicarboxylato)europium(III)] methanol monosolvate] top
Crystal data top
[Eu(C7H3NO4)Cl(CH4O)2]·CH4OF(000) = 872
Mr = 448.64Dx = 2.044 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5415 reflections
a = 10.4870 (3) Åθ = 3.0–29.1°
b = 10.9123 (3) ŵ = 4.51 mm1
c = 12.9248 (3) ÅT = 150 K
β = 99.694 (2)°Block, white
V = 1457.96 (7) Å30.20 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2550 independent reflections
Radiation source: fine-focus sealed tube2260 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1211
Tmin = 0.448, Tmax = 0.532k = 1212
7658 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0287P)2 + 1.5721P]
where P = (Fo2 + 2Fc2)/3
2550 reflections(Δ/σ)max = 0.001
184 parametersΔρmax = 1.34 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
[Eu(C7H3NO4)Cl(CH4O)2]·CH4OV = 1457.96 (7) Å3
Mr = 448.64Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.4870 (3) ŵ = 4.51 mm1
b = 10.9123 (3) ÅT = 150 K
c = 12.9248 (3) Å0.20 × 0.15 × 0.14 mm
β = 99.694 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2550 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2260 reflections with I > 2σ(I)
Tmin = 0.448, Tmax = 0.532Rint = 0.029
7658 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.02Δρmax = 1.34 e Å3
2550 reflectionsΔρmin = 0.56 e Å3
184 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.19538 (2)0.471828 (18)0.142087 (15)0.01375 (8)
C10.1686 (5)1.0083 (4)0.0245 (4)0.0217 (10)
H1A0.17521.06790.07470.026*
C20.1143 (4)0.8967 (4)0.0540 (3)0.0204 (10)
H2A0.08300.88010.12430.024*
C30.1066 (4)0.8081 (4)0.0227 (3)0.0152 (9)
C40.1520 (4)0.8388 (4)0.1267 (3)0.0141 (9)
C50.2135 (4)1.0315 (4)0.0803 (3)0.0187 (9)
H5A0.25081.10730.09920.022*
C60.1440 (4)0.7542 (4)0.2180 (3)0.0142 (9)
C70.0458 (4)0.6855 (4)0.0113 (3)0.0149 (9)
C80.0245 (5)0.4395 (4)0.3294 (4)0.0309 (12)
H8A0.11580.42380.31640.046*
H8B0.00960.52620.33420.046*
H8C0.01370.40120.39420.046*
C90.2592 (5)0.3714 (5)0.1019 (4)0.0298 (12)
H9A0.32210.37900.14760.045*
H9B0.18400.41890.12920.045*
H9C0.23530.28690.09740.045*
C100.6250 (6)0.3148 (5)0.1466 (4)0.0437 (14)
H10A0.71430.31360.13830.066*
H10B0.60880.24890.19190.066*
H10C0.60570.39150.17690.066*
Cl10.41214 (10)0.62123 (9)0.17815 (8)0.0207 (2)
N10.2053 (3)0.9493 (3)0.1559 (3)0.0161 (8)
O10.0723 (3)0.6882 (2)0.0493 (2)0.0201 (7)
O20.1171 (3)0.5928 (2)0.0058 (2)0.0189 (7)
O30.1826 (3)0.7950 (2)0.3084 (2)0.0180 (7)
O40.0993 (3)0.6474 (2)0.2001 (2)0.0154 (6)
O50.3136 (3)0.4156 (3)0.0010 (2)0.0222 (7)
O60.0332 (3)0.3900 (3)0.2445 (2)0.0235 (7)
O70.5459 (4)0.3005 (4)0.0477 (3)0.0470 (10)
H7A0.57840.32030.01590.056*
H5B0.39050.38480.02020.056*
H6B0.02680.31520.25820.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.01652 (13)0.00914 (13)0.01382 (12)0.00020 (9)0.00258 (8)0.00020 (8)
C10.029 (3)0.013 (2)0.021 (2)0.0009 (19)0.001 (2)0.0053 (18)
C20.024 (3)0.019 (2)0.015 (2)0.0010 (19)0.0036 (18)0.0026 (18)
C30.012 (2)0.016 (2)0.017 (2)0.0029 (18)0.0012 (16)0.0021 (17)
C40.011 (2)0.011 (2)0.018 (2)0.0013 (17)0.0040 (17)0.0012 (17)
C50.024 (3)0.011 (2)0.019 (2)0.0006 (19)0.0025 (18)0.0003 (18)
C60.008 (2)0.015 (2)0.018 (2)0.0021 (17)0.0011 (17)0.0019 (17)
C70.021 (3)0.015 (2)0.007 (2)0.0018 (19)0.0006 (17)0.0021 (16)
C80.036 (3)0.029 (3)0.031 (3)0.005 (2)0.017 (2)0.003 (2)
C90.031 (3)0.033 (3)0.024 (3)0.004 (2)0.002 (2)0.008 (2)
C100.030 (3)0.052 (4)0.050 (4)0.001 (3)0.006 (3)0.012 (3)
Cl10.0198 (6)0.0199 (5)0.0212 (6)0.0041 (4)0.0000 (4)0.0028 (4)
N10.017 (2)0.0103 (18)0.0194 (19)0.0012 (14)0.0013 (15)0.0002 (14)
O10.0193 (18)0.0143 (15)0.0243 (17)0.0021 (13)0.0027 (13)0.0026 (12)
O20.0263 (18)0.0117 (15)0.0163 (15)0.0037 (14)0.0034 (13)0.0013 (12)
O30.0208 (18)0.0147 (15)0.0166 (16)0.0028 (13)0.0024 (13)0.0004 (12)
O40.0181 (17)0.0090 (14)0.0177 (15)0.0007 (12)0.0006 (12)0.0019 (12)
O50.0222 (18)0.0244 (17)0.0182 (16)0.0044 (14)0.0019 (13)0.0003 (13)
O60.0294 (19)0.0183 (16)0.0224 (17)0.0005 (14)0.0032 (14)0.0033 (13)
O70.043 (3)0.067 (3)0.034 (2)0.018 (2)0.0145 (19)0.0166 (19)
Geometric parameters (Å, º) top
Eu1—O3i2.344 (3)C7—O11.253 (5)
Eu1—O42.346 (3)C7—O21.253 (5)
Eu1—O22.354 (3)C8—O61.445 (5)
Eu1—O1ii2.373 (3)C8—H8A0.9600
Eu1—O52.450 (3)C8—H8B0.9600
Eu1—O62.490 (3)C8—H8C0.9600
Eu1—N1i2.655 (3)C9—O51.438 (5)
Eu1—Cl12.7723 (11)C9—H9A0.9600
C1—C21.371 (6)C9—H9B0.9600
C1—C51.380 (6)C9—H9C0.9600
C1—H1A0.9300C10—O71.410 (7)
C2—C31.397 (6)C10—H10A0.9600
C2—H2A0.9300C10—H10B0.9600
C3—C41.389 (6)C10—H10C0.9600
C3—C71.515 (6)N1—Eu1iii2.655 (3)
C4—N11.355 (5)O1—Eu1ii2.373 (3)
C4—C61.512 (6)O3—Eu1iii2.344 (3)
C5—N11.340 (5)O5—H5B0.8701
C5—H5A0.9300O6—H6B0.8404
C6—O31.253 (5)O7—H7A0.9656
C6—O41.262 (5)
O3i—Eu1—O4146.02 (10)N1—C5—H5A118.7
O3i—Eu1—O2141.52 (10)C1—C5—H5A118.7
O4—Eu1—O272.05 (9)O3—C6—O4123.4 (4)
O3i—Eu1—O1ii75.98 (10)O3—C6—C4117.3 (3)
O4—Eu1—O1ii122.41 (10)O4—C6—C4119.2 (3)
O2—Eu1—O1ii85.21 (10)O1—C7—O2125.6 (4)
O3i—Eu1—O571.06 (10)O1—C7—C3115.6 (4)
O4—Eu1—O5137.83 (10)O2—C7—C3118.6 (4)
O2—Eu1—O571.76 (10)O6—C8—H8A109.5
O1ii—Eu1—O574.93 (10)O6—C8—H8B109.5
O3i—Eu1—O687.13 (10)H8A—C8—H8B109.5
O4—Eu1—O675.79 (10)O6—C8—H8C109.5
O2—Eu1—O6117.19 (10)H8A—C8—H8C109.5
O1ii—Eu1—O669.05 (10)H8B—C8—H8C109.5
O5—Eu1—O6141.48 (10)O5—C9—H9A109.5
O3i—Eu1—N1i63.22 (10)O5—C9—H9B109.5
O4—Eu1—N1i83.10 (10)H9A—C9—H9B109.5
O2—Eu1—N1i151.18 (10)O5—C9—H9C109.5
O1ii—Eu1—N1i121.25 (10)H9A—C9—H9C109.5
O5—Eu1—N1i123.02 (10)H9B—C9—H9C109.5
O6—Eu1—N1i68.52 (10)O7—C10—H10A109.5
O3i—Eu1—Cl192.51 (7)O7—C10—H10B109.5
O4—Eu1—Cl181.38 (7)H10A—C10—H10B109.5
O2—Eu1—Cl188.32 (8)O7—C10—H10C109.5
O1ii—Eu1—Cl1151.46 (8)H10A—C10—H10C109.5
O5—Eu1—Cl176.64 (7)H10B—C10—H10C109.5
O6—Eu1—Cl1137.37 (7)C5—N1—C4117.8 (4)
N1i—Eu1—Cl173.41 (8)C5—N1—Eu1iii126.3 (3)
C2—C1—C5119.5 (4)C4—N1—Eu1iii115.6 (2)
C2—C1—H1A120.2C7—O1—Eu1ii126.7 (3)
C5—C1—H1A120.2C7—O2—Eu1128.4 (2)
C1—C2—C3119.2 (4)C6—O3—Eu1iii128.6 (3)
C1—C2—H2A120.4C6—O4—Eu1130.2 (3)
C3—C2—H2A120.4C9—O5—Eu1126.9 (3)
C4—C3—C2117.9 (4)C9—O5—H5B109.8
C4—C3—C7123.5 (4)Eu1—O5—H5B116.4
C2—C3—C7118.5 (4)C8—O6—Eu1132.9 (3)
N1—C4—C3122.8 (4)C8—O6—H6B98.2
N1—C4—C6113.6 (3)Eu1—O6—H6B123.2
C3—C4—C6123.6 (4)C10—O7—H7A120.6
N1—C5—C1122.6 (4)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z; (iii) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Eu(C7H3NO4)Cl(CH4O)2]·CH4O
Mr448.64
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)10.4870 (3), 10.9123 (3), 12.9248 (3)
β (°) 99.694 (2)
V3)1457.96 (7)
Z4
Radiation typeMo Kα
µ (mm1)4.51
Crystal size (mm)0.20 × 0.15 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.448, 0.532
No. of measured, independent and
observed [I > 2σ(I)] reflections
7658, 2550, 2260
Rint0.029
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.057, 1.02
No. of reflections2550
No. of parameters184
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.34, 0.56

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Eu1—O3i2.344 (3)Eu1—O52.450 (3)
Eu1—O42.346 (3)Eu1—O62.490 (3)
Eu1—O22.354 (3)Eu1—N1i2.655 (3)
Eu1—O1ii2.373 (3)Eu1—Cl12.7723 (11)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21001007, 21171008 and 21001008).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwamy, G. Y. S. K., Chandramohan, K., Lakshmi, N. V. & Ravikumar, K. (1998). Z. Kristallogr. 213, 191–193.  Web of Science CSD CrossRef CAS Google Scholar
First citationTong, M. L., Yang, G. & Chen, X. M. (2000). Aust. J. Chem. 53, 607–612.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, B. L., Zhang, H. Q., Zhang, H. Y., Wu, Q. A., Hou, H. W., Zhu, Y. & Wang, X. Y. (2003). Aust. J. Chem. 56, 335–338.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. M., Wu, H. S. & Chen, X. M. (2003). Eur. J. Inorg. Chem. pp. 2959–2961.  Web of Science CSD CrossRef Google Scholar
First citationZhao, B., Chen, X.-Y., Cheng, P., Liao, D.-Z., Yan, S.-P. & Jiang, Z.-H. (2004). Inorg. Chem. 126, 15394–15395.  CAS Google Scholar
First citationZhong, Z. J., You, X. Z. & Yang, Q. C. (1994). Polyhedron, 13, 1951–1954.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds