organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1431

Cyclo­hexa-2,5-diene-1,4-dione–1,2,4,5-tetra­fluoro-3,6-di­iodo­benzene (1/1)

aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450052, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: lyhxxjbm@126.com

(Received 12 March 2012; accepted 12 April 2012; online 18 April 2012)

The asymmetric unit of the title co-crystal adduct, C6H4O2·C6F4I2, comprises a half-mol­ecule each of cyclo­hexa-2,5-diene-1,4-dione and 1,2,4,5-tetra­fluoro-3,6-diiodo­benzene. The C6F4I2 mol­ecule is almost planar (r.m.s. deviation = 0.0062 Å). In the crystal, the components are connected through O⋯I halogen bonds [3.017 (11) Å], leading to the formation of wavelike chains along the a axis. The crystal packing also features C—H⋯F inter­actions.

Related literature

For related studies on co-crystal formation, see: Bhogala & Nangia (2008)[Bhogala, B. R. & Nangia, A. (2008). New J. Chem. 32, 800-807.]; Ji et al. (2011[Ji, B. M., Wang, W. Z., Deng, D. S. & Zhang, Y. (2011). Cryst. Growth Des. 11, 3622-3629.]); Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2683.]); Cardillo et al. (2000[Cardillo, P., Corradi, E., Lunghi, A., Meille, S. V., Messina, M. T., Metrangolo, P. & Resnati, G. (2000). Tetrahedron, 56, 5535-5550.]). For background to halogen bonding, see: Metrangolo et al. (2008[Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond. 126, 105-136.]).

[Scheme 1]

Experimental

Crystal data
  • C6H4O2·C6F4I2

  • Mr = 509.95

  • Triclinic, [P \overline 1]

  • a = 5.778 (3) Å

  • b = 6.354 (3) Å

  • c = 10.013 (5) Å

  • α = 102.295 (5)°

  • β = 93.861 (5)°

  • γ = 97.781 (5)°

  • V = 354.1 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.48 mm−1

  • T = 296 K

  • 0.43 × 0.30 × 0.26 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.249, Tmax = 0.389

  • 2585 measured reflections

  • 1291 independent reflections

  • 1096 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.087

  • S = 1.07

  • 1291 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 1.34 e Å−3

  • Δρmin = −0.76 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯F1i 0.93 2.64 3.562 171
Symmetry code: (i) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title co-crystal is part of a study on the halogen bond, which is a powerful intermolecular interaction we and others have used extensively to produce a variety of structures involving perfuorinated compounds (Ji et al. 2011; Arman et al. 2010; Cardillo et al. 2000), usually very diffcult to crystallize.

In the crystal structure, 1,2,4,5-tetrafluoro-3,6-diiodobenzene molecule is flat with the r.m.s. deviation of the 12 constituent atoms being 0.0062 Å (Fig. 1). It is noted that the cyclohexa-2,5-diene-1,4-dione molecule acts as a bidentate donor towards 1,2,4,5-tetrafluoro-3,6-diiodobenzene molecule, giving rise to chains extended throughout the whole crystal, in which the bond length of O···I halogen bond is 3.017 Å, as observed in the previous reports (Metrangolo et al. 2008; Ji et al. 2011).

In addition, the molecules are further stabilized in the crystal packing via a combination of C—H···F contacts (Table. 1), as shown in Fig. 2.

Related literature top

For related studies on co-crystal formation, see: Bhogala & Nangia (2008); Ji et al. (2011); Arman et al. (2010); Cardillo et al. (2000). For background to halogen bonding, see: Metrangolo et al. (2008).

Experimental top

The starting materials were commercial obtained from Aldrich. The 1:1 adduct was obtained by dissolving in chloroform, at room temperature and in a vial, equimolecular amounts of cyclohexa-2,5-diene-1,4-dione and 1,2,4,5-tetrafluoro-3,6-diiodobenzene. The open vial was closed in a cylindrical bottle containing vaseline oil. Volatile solvents were allowed to diffuse at room temperature and, after one day, the yellow block crystals were obtained.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH), and with Uĩso~(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title molecular structure with atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. A view in projection down the b axis showing the unit-cell contents. The O—I and C—H···F are shown as bule and purple dashed lines.
Cyclohexa-2,5-diene-1,4-dione–1,2,4,5-tetrafluoro-3,6-diiodobenzene (1/1) top
Crystal data top
C6H4O2·C6F4I2Z = 1
Mr = 509.95F(000) = 234
Triclinic, P1Dx = 2.391 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.778 (3) ÅCell parameters from 1573 reflections
b = 6.354 (3) Åθ = 3.3–25.5°
c = 10.013 (5) ŵ = 4.48 mm1
α = 102.295 (5)°T = 296 K
β = 93.861 (5)°Block, yellow
γ = 97.781 (5)°0.43 × 0.30 × 0.26 mm
V = 354.1 (3) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1291 independent reflections
Radiation source: fine-focus sealed tube1096 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 25.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.249, Tmax = 0.389k = 77
2585 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0571P)2]
where P = (Fo2 + 2Fc2)/3
1291 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 1.34 e Å3
0 restraintsΔρmin = 0.76 e Å3
Crystal data top
C6H4O2·C6F4I2γ = 97.781 (5)°
Mr = 509.95V = 354.1 (3) Å3
Triclinic, P1Z = 1
a = 5.778 (3) ÅMo Kα radiation
b = 6.354 (3) ŵ = 4.48 mm1
c = 10.013 (5) ÅT = 296 K
α = 102.295 (5)°0.43 × 0.30 × 0.26 mm
β = 93.861 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
1291 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1096 reflections with I > 2σ(I)
Tmin = 0.249, Tmax = 0.389Rint = 0.020
2585 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.07Δρmax = 1.34 e Å3
1291 reflectionsΔρmin = 0.76 e Å3
91 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3224 (8)0.5732 (8)0.4260 (5)0.0453 (11)
C20.3930 (9)0.3726 (8)0.3786 (5)0.0466 (11)
C30.4339 (9)0.6981 (8)0.5494 (5)0.0501 (12)
C40.5734 (10)0.8493 (9)0.0745 (6)0.0593 (14)
C50.3440 (10)0.8029 (10)0.0092 (6)0.0652 (15)
H50.24640.67190.01410.078*
C60.2763 (10)0.9415 (10)0.0761 (6)0.0612 (14)
H60.12960.90860.12630.073*
F10.2901 (6)0.2428 (6)0.2593 (3)0.0702 (9)
F20.3718 (6)0.8922 (5)0.6021 (4)0.0712 (9)
I10.05048 (6)0.67187 (6)0.31973 (4)0.06065 (19)
O10.6309 (10)0.7170 (8)0.1376 (5)0.0898 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (3)0.048 (3)0.043 (3)0.0023 (19)0.003 (2)0.014 (2)
C20.047 (3)0.047 (3)0.039 (3)0.002 (2)0.007 (2)0.003 (2)
C30.054 (3)0.045 (3)0.047 (3)0.003 (2)0.001 (2)0.004 (2)
C40.064 (3)0.058 (3)0.051 (3)0.022 (3)0.013 (3)0.000 (3)
C50.062 (3)0.068 (4)0.055 (3)0.004 (3)0.011 (3)0.001 (3)
C60.054 (3)0.069 (4)0.053 (3)0.020 (3)0.017 (2)0.002 (3)
F10.076 (2)0.067 (2)0.0527 (18)0.0096 (16)0.0214 (16)0.0097 (15)
F20.084 (2)0.0544 (19)0.068 (2)0.0227 (16)0.0092 (17)0.0052 (16)
I10.0554 (3)0.0678 (3)0.0610 (3)0.00885 (17)0.00837 (17)0.02435 (19)
O10.108 (4)0.073 (3)0.085 (3)0.027 (3)0.035 (3)0.016 (2)
Geometric parameters (Å, º) top
C1—C31.381 (7)C4—O11.221 (7)
C1—C21.388 (7)C4—C6ii1.483 (9)
C1—I12.079 (5)C4—C51.478 (8)
C2—F11.346 (5)C5—C61.298 (9)
C2—C3i1.373 (8)C5—H50.9300
C3—F21.340 (6)C6—C4ii1.483 (9)
C3—C2i1.373 (8)C6—H60.9300
C3—C1—C2116.9 (5)O1—C4—C6ii123.3 (5)
C3—C1—I1122.0 (4)O1—C4—C5119.7 (6)
C2—C1—I1121.0 (4)C6ii—C4—C5117.0 (5)
F1—C2—C3i118.8 (5)C6—C5—C4121.2 (6)
F1—C2—C1119.7 (4)C6—C5—H5119.4
C3i—C2—C1121.6 (4)C4—C5—H5119.4
F2—C3—C2i118.5 (4)C5—C6—C4ii121.8 (5)
F2—C3—C1120.0 (5)C5—C6—H6119.1
C2i—C3—C1121.6 (5)C4ii—C6—H6119.1
C3—C1—C2—F1179.7 (5)C2—C1—C3—C2i0.2 (8)
I1—C1—C2—F12.5 (7)I1—C1—C3—C2i177.4 (4)
C3—C1—C2—C3i0.2 (8)O1—C4—C5—C6179.1 (6)
I1—C1—C2—C3i177.4 (4)C6ii—C4—C5—C61.2 (10)
C2—C1—C3—F2179.0 (5)C4—C5—C6—C4ii1.3 (10)
I1—C1—C3—F21.9 (7)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···F1iii0.932.643.562171
Symmetry code: (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC6H4O2·C6F4I2
Mr509.95
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.778 (3), 6.354 (3), 10.013 (5)
α, β, γ (°)102.295 (5), 93.861 (5), 97.781 (5)
V3)354.1 (3)
Z1
Radiation typeMo Kα
µ (mm1)4.48
Crystal size (mm)0.43 × 0.30 × 0.26
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.249, 0.389
No. of measured, independent and
observed [I > 2σ(I)] reflections
2585, 1291, 1096
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.087, 1.07
No. of reflections1291
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.34, 0.76

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···F1i0.932.643.562171
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

We are grateful to the National Natural Science Foundation of China (grant No. 21072089) for financial support.

References

First citationArman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2683.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBhogala, B. R. & Nangia, A. (2008). New J. Chem. 32, 800–807.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCardillo, P., Corradi, E., Lunghi, A., Meille, S. V., Messina, M. T., Metrangolo, P. & Resnati, G. (2000). Tetrahedron, 56, 5535–5550.  Web of Science CSD CrossRef CAS Google Scholar
First citationJi, B. M., Wang, W. Z., Deng, D. S. & Zhang, Y. (2011). Cryst. Growth Des. 11, 3622–3629.  Web of Science CSD CrossRef CAS Google Scholar
First citationMetrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). Struct. Bond. 126, 105–136.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1431
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds