organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1311

(2E,4E)-2-Cyano-5-di­propyl­amino-N,N-di­methyl­penta-2,4-dienamide

aState Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
*Correspondence e-mail: duxiaohua@zjut.edu.cn

(Received 15 February 2012; accepted 30 March 2012; online 6 April 2012)

In the title compound, C14H23N3O, the n-propyl group is disordered over two orientations with an occupancy ratio of 0.778 (3):0.222 (3). In the crystal, mol­ecules are linked by pairs of weak C—H⋯O inter­actions into inversion dimers with an R22(14) graph-set motif.

Related literature

For applications of the title compound, see: Bryson et al. (1976[Bryson, T. A., Donelson, D. M., Dunlap, R. B., Fisher, R. R. & Eill, P. D. (1976). J. Org. Chem. 41, 2066-2067.]). For the synthesis of N,N-dimethyl­cyano­acetamide, see: Basheer et al. (2007[Basheer, A., Yamataka, H., Ammal, S. C. & Rappoport, Z. (2007). J. Org. Chem. 72, 5297-5312.]). For hydrogen-bond graph-set motifs, see Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For a description of the Cambridge Structural Database, see Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For structures with disordered n-propyl­groups attached to CH2-N-CH2, see: Bouwman et al. (2000[Bouwman, E., Douziech, B., Gutierrez-Soto, L., Beretta, M., Driessen, W. L., Reedijk, J. & Mendoza-Diaz, G. (2000). Inorg. Chim. Acta, 304, 250-259.]); Liu et al. (2005[Liu, Q.-X., Song, H.-B. & Li, Z.-M. (2005). Acta Cryst. E61, o385-o386.]); Wang et al. (2009[Wang, N., Wang, M., Liu, J., Jin, K., Chen, L. & Sun, L. (2009). Inorg. Chem. 48, 11551-11558.]). For the extinction correction, see: Becker & Coppens (1974[Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129-147.]).

[Scheme 1]

Experimental

Crystal data
  • C14H23N3O

  • Mr = 249.35

  • Monoclinic, P 21 /c

  • a = 9.0177 (6) Å

  • b = 14.0654 (9) Å

  • c = 12.9008 (8) Å

  • β = 111.768 (2)°

  • V = 1519.63 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.48 × 0.46 × 0.28 mm

Data collection
  • Rigaku R-AXIS RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.957, Tmax = 0.981

  • 14122 measured reflections

  • 3321 independent reflections

  • 1412 reflections with I > 3σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.115

  • S = 1.49

  • 3321 reflections

  • 171 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O1i 0.93 2.46 3.375 (2) 168
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SIR97 (Altomare et al., 1999)[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]; program(s) used to refine structure: JANA2006 (Petricek et al., 2006[Petricek, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The title compound is a useful intermediate for the synthesis of 2-chloro-N,N-dimethylnicotinamide derivatives, which are widely used in syntheses of pharmaceutics and pesticides (Bryson et al., 1976). In order to establish conformational details of the title molecule, its crystal structure has been determined. In the crystal structure, the n-propyl composed of C12\C13\C14 is disordered over two positions with different occupancies that are 0.778 (3) and 0.222 (3) for the chains A and B, respectively. Both disordered chains are related approximately by a non-crystallographic symmetry plane. As shown in Fig. 1, O1 is deviated by 3.6 (4) Å from the plane composed of C1\C2\C3\C4\C5.

A search in the Cambridge Structural Database (Allen, 2002) for the structures that contain a fragment of the n-propyl attached to CH2-N-CH2 where N is not involved in a ring yielded 14 hits from which three of them contained a disordered n-propyl fragment. These three structures are FEDKEF, i. e. N,N-bis (anthracen-9-ylmethyl)propylamine determined by Liu et al. (2005); HUYWAA, i. e. (µ2-N,N-bis((diphenylphosphino)methyl) -n-propylamine-P,P') -bis(µ2-propane-1,3-dithiolato-S,S,S',S')-decacarbonyl-tetra-iron dichloromethane solvate determined by Wang et al. (2009); WIGKOM, i. e. N,N-bis(2-ethyl-5-methyl-imidazol -4-ylmethyl)aminopropane monohydrate determined by Bouwman et al. (2000). These examples show that the disorder of n-propyl chain is rather common in molecules containing such a motif as it happens to be present in the title structure (Fig. 1).

There are present only weak intermolecular interactions in the structure among which C5—H5···O1i is most prominent (the symmetry code i: 1-x, 1-y, 1-z). As shown in Fig. 2, a centrosymmetric dimer about the crystallographic inversion centre is formed by a pair of these hydrogen bonds with the graph set motif R22(14) (Etter et al., 1990).

Related literature top

For applications of the title compound, see: Bryson et al. (1976). For the synthesis of N,N-dimethylcyanoacetamide, see: Basheer et al. (2007). For hydrogen-bond graph-set motifs, see Etter et al. (1990). For a description of the Cambridge Structural Database, see Allen (2002). For structures with disordered n-propylgroups attached to CH2-N-CH2, see: Bouwman et al. (2000); Liu et al. (2005); Wang et al. (2009). For the extinction correction, see: Becker & Coppens (1974).

Experimental top

To a three-necked flask, 3-dipropylaminopropenal (31 g, 0.2 mol), N,N-dimethylcyanoacetamide (22.6 g, 0.2 mol) (Basheer et al., 2007), anhydrous acetic acid (2.4 g, 0.04 mol), anhydrous monoethanolamine (2.44 g, 0.04 mol) and toluene (50 ml) were added. The mixture was stirred and heated to reflux for about 3 h and the generated water was separated by azeotropic distillation. After the reaction had completed, toluene was removed under vacuum. Then ethyl acetate (60 ml) was added to the residue and stirred at room temperature for 2 h. The precipitate was filtered to yield (2E,4E) -2-cyano-5-(dipropylamino)-N,N-dimethyl-2,4-pentadienamide (40 g, yield 80%). Single crystals were obtained as light yellow blocks (about 0.5–1 mm size) by slow evaporation at room temperature from a solution in petroleum ether (30–60°C).

Refinement top

The initial determination of the structural model yielded the non-disordered non-hydrogen atoms in the structure as well as the atoms C12a\C13a\C14a which form the dominant part of the disordered n-propyl chain. The difference electron density map has shown other maxima corresponding to the atoms of the less occupied disordered chain C12b\C13b\C14b. Moreover, the difference electron density map has also shown the hydrogen positions of all the hydrogens with exception of those pertinent to the less occupied n-propyl chain. The non-hydrogen atoms of both disoredered chains were related approximately by reflection through a non crystallographic mirror plane. The non-proper symmetry that related the disordered chains has been respected in the refinement which assumed that both chains were identical except for the inversion between them. Thus, the individual parameters of the atoms in the chain were refined in addition to the positional parameters of each of the disordered chain. Moreover, the occupational parameters of both chains were constrained to equal to 1.0. The described procedure infers that the positions of the methyl hydrogens of C14b which are not observable in the difference electron density maps can be biased because the methyl hydrogens pertinent to C14a and C14b need not be related by the reflection through the non-crystallographic mirror plane. The riding-atom approximation has been used for all the H-atoms in the structure: The used constraints are Csp2-Hsp2=0.93, CmethylHmethyl=0.96, Cmethylene-Hmethylene=0.97 Å. UisoHsp2=1.2UeqCsp2, UisoHmethylene=1.2UeqCmethylene, UisoHmethyl=1.5UeqCmethyl.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SIR97 (Altomare et al. , 1999); program(s) used to refine structure: JANA2006 (Petricek et al., 2006); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule with the atomic labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The graph set motif R22(14) showing the hydrogen bonds C5—H5···O1i. The symmetry code: (i): 1-x, 1-y, 1-z.
(2E,4E)-2-Cyano-5-dipropylamino-N,N- dimethylpenta-2,4-dienamide top
Crystal data top
C14H23N3OF(000) = 544
Mr = 249.35Dx = 1.090 Mg m3
Monoclinic, P21/cMelting point = 343–345 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.0177 (6) ÅCell parameters from 7731 reflections
b = 14.0654 (9) Åθ = 3.4–27.4°
c = 12.9008 (8) ŵ = 0.07 mm1
β = 111.768 (2)°T = 296 K
V = 1519.63 (17) Å3Block, yellow
Z = 40.48 × 0.46 × 0.28 mm
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
3321 independent reflections
Radiation source: rotating anode1412 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 10.00 pixels mm-1θmax = 27.0°, θmin = 3.4°
ω scansh = 1111
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1717
Tmin = 0.957, Tmax = 0.981l = 1616
14122 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.115Weighting scheme based on measured s.u.'s w = 1/(σ2(I) + 0.0004I2)
S = 1.49(Δ/σ)max = 0.008
3321 reflectionsΔρmax = 0.17 e Å3
171 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: B–C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
93 constraintsExtinction coefficient: 21000 (2000)
Primary atom site location: structure-invariant direct methods
Crystal data top
C14H23N3OV = 1519.63 (17) Å3
Mr = 249.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.0177 (6) ŵ = 0.07 mm1
b = 14.0654 (9) ÅT = 296 K
c = 12.9008 (8) Å0.48 × 0.46 × 0.28 mm
β = 111.768 (2)°
Data collection top
Rigaku R-AXIS RAPID/ZJUG
diffractometer
3321 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1412 reflections with I > 3σ(I)
Tmin = 0.957, Tmax = 0.981Rint = 0.056
14122 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.49Δρmax = 0.17 e Å3
3321 reflectionsΔρmin = 0.14 e Å3
171 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7710 (2)0.36154 (14)0.45084 (13)0.0577 (8)
C30.5630 (2)0.33029 (13)0.52819 (12)0.0575 (7)
H1c30.532920.3930930.5091060.0689*
C40.4773 (2)0.28096 (14)0.58200 (13)0.0609 (8)
H1c40.4995090.2171630.6000790.073*
N10.86144 (17)0.32384 (10)0.39765 (11)0.0596 (6)
O10.76404 (15)0.44850 (10)0.46179 (10)0.0806 (7)
C80.7432 (2)0.20380 (15)0.53474 (14)0.0613 (8)
C20.6858 (2)0.29684 (13)0.50038 (13)0.0539 (7)
N20.27560 (19)0.29019 (11)0.66391 (12)0.0705 (8)
C50.3609 (2)0.32599 (13)0.60832 (13)0.0601 (8)
H50.3391310.3886730.5845830.0721*
C70.8384 (2)0.22932 (13)0.34734 (14)0.0763 (10)
H1c70.9208690.1875590.3931770.1145*
H2c70.7360890.2050420.3414280.1145*
H3c70.8431170.2332260.274330.1145*
C60.9693 (2)0.38499 (14)0.36768 (16)0.0766 (10)
H1c60.9159030.4085780.2932210.1149*
H2c61.0618540.3493110.3712350.1149*
H3c61.0014830.4374550.4187930.1149*
C90.1604 (2)0.34923 (13)0.68939 (16)0.0725 (9)
H1c90.0606810.3147780.6710240.087*
H2c90.1339450.4043510.6407310.087*
N30.7901 (2)0.12920 (14)0.56658 (14)0.0875 (9)
C100.2176 (3)0.38138 (15)0.80951 (16)0.0829 (10)
H1c100.1364860.420870.8205810.0995*
H2c100.2295440.3265920.8576130.0995*
C110.3729 (3)0.43521 (19)0.84523 (18)0.1130 (13)
H1c110.4016340.4559530.9210730.1694*
H2c110.3609980.4894960.7976970.1694*
H3c110.4550820.39450.8396720.1694*
C12a0.3146 (3)0.19427 (17)0.7201 (2)0.0660 (11)0.778 (3)
H1c12a0.2898270.193880.7870920.0792*0.778 (3)
H2c12a0.4278490.1817880.7414270.0792*0.778 (3)
C13a0.2208 (6)0.1178 (3)0.6423 (4)0.1043 (16)0.778 (3)
H1c13a0.1080590.1333680.6154930.1252*0.778 (3)
H2c13a0.2562010.1123720.5801050.1252*0.778 (3)
C14a0.2497 (11)0.0232 (3)0.7062 (8)0.168 (4)0.778 (3)
H2c14a0.3371820.0302560.77640.2515*0.778 (3)
H1c14a0.2747990.025310.6629840.2515*0.778 (3)
H3c14a0.1552930.0055540.7192740.2515*0.778 (3)
C12b0.2241 (11)0.1875 (6)0.6423 (7)0.0660 (12)0.222 (3)
H1c12b0.1149420.1780090.6368440.0792*0.222 (3)
H2c12b0.2337410.1627610.5748450.0792*0.222 (3)
C13b0.3354 (13)0.1344 (7)0.7415 (8)0.1043 (18)0.222 (3)
H1c13b0.3330990.162910.8093460.1252*0.222 (3)
H2c13b0.4427020.1365830.741160.1252*0.222 (3)
C14b0.2797 (16)0.0305 (7)0.7341 (10)0.168 (4)0.222 (3)
H2c14b0.2007010.0186350.6612890.2515*0.222 (3)
H1c14b0.3692460.010990.7468410.2515*0.222 (3)
H3c14b0.2344110.0190520.7895570.2515*0.222 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0571 (11)0.0605 (13)0.0590 (10)0.0015 (10)0.0255 (9)0.0007 (9)
C30.0606 (11)0.0574 (12)0.0577 (10)0.0015 (9)0.0257 (9)0.0009 (8)
C40.0639 (12)0.0587 (12)0.0708 (11)0.0003 (10)0.0376 (10)0.0002 (9)
N10.0639 (10)0.0602 (10)0.0652 (9)0.0069 (8)0.0361 (8)0.0048 (7)
O10.0962 (10)0.0573 (9)0.1103 (10)0.0023 (8)0.0641 (8)0.0002 (7)
C80.0594 (12)0.0697 (14)0.0619 (11)0.0027 (10)0.0308 (9)0.0044 (10)
C20.0555 (11)0.0552 (12)0.0561 (10)0.0014 (9)0.0265 (8)0.0013 (8)
N20.0782 (11)0.0606 (11)0.0934 (11)0.0013 (9)0.0559 (9)0.0033 (8)
C50.0620 (12)0.0619 (13)0.0623 (11)0.0037 (10)0.0299 (9)0.0011 (9)
C70.0923 (16)0.0766 (15)0.0707 (13)0.0047 (12)0.0426 (12)0.0117 (10)
C60.0767 (14)0.0827 (15)0.0868 (14)0.0099 (11)0.0494 (12)0.0022 (11)
C90.0594 (12)0.0819 (15)0.0878 (13)0.0070 (10)0.0408 (10)0.0004 (10)
N30.0948 (13)0.0784 (13)0.1020 (13)0.0141 (10)0.0513 (10)0.0235 (10)
C100.0889 (16)0.0922 (16)0.0831 (14)0.0141 (13)0.0498 (11)0.0037 (11)
C110.0842 (16)0.138 (2)0.1120 (19)0.0011 (16)0.0305 (14)0.0358 (17)
C12a0.0678 (15)0.0697 (18)0.0709 (16)0.0006 (13)0.0378 (13)0.0027 (13)
C13a0.095 (2)0.084 (2)0.143 (3)0.0158 (19)0.0541 (18)0.024 (2)
C14a0.199 (5)0.0557 (19)0.302 (7)0.009 (3)0.156 (4)0.002 (3)
C12b0.064 (2)0.0695 (18)0.0744 (14)0.0016 (14)0.0367 (13)0.0021 (12)
C13b0.127 (3)0.100 (2)0.0975 (19)0.031 (2)0.0550 (18)0.0268 (17)
C14b0.251 (9)0.078 (2)0.235 (4)0.054 (4)0.161 (4)0.064 (3)
Geometric parameters (Å, º) top
C1—N11.354 (3)C9—C101.510 (3)
C1—O11.236 (2)C10—H1c100.97
C1—C21.480 (3)C10—H2c100.97
C3—H1c30.93C10—C111.506 (3)
C3—C41.399 (3)C11—H1c110.96
C3—C21.368 (3)C11—H2c110.96
C4—H1c40.93C11—H3c110.96
C4—C51.373 (3)C12a—H1c12a0.97
N1—C71.460 (2)C12a—H2c12a0.97
N1—C61.454 (3)C12a—C13a1.500 (5)
C8—C21.417 (3)C13a—H1c13a0.97
C8—N31.149 (3)C13a—H2c13a0.97
N2—C51.330 (3)C13a—C14a1.536 (8)
N2—C91.460 (3)C14a—H2c14a0.96
N2—C12a1.510 (3)C14a—H1c14a0.96
N2—C12b1.512 (9)C14a—H3c14a0.96
C5—H50.93C12b—H1c12b0.97
C7—H1c70.96C12b—H2c12b0.97
C7—H2c70.96C12b—C13b1.500 (12)
C7—H3c70.96C13b—H1c13b0.97
C6—H1c60.96C13b—H2c13b0.97
C6—H2c60.96C13b—C14b1.536 (14)
C6—H3c60.96C14b—H2c14b0.96
C9—H1c90.97C14b—H1c14b0.96
C9—H2c90.97C14b—H3c14b0.96
N1—C1—O1120.76 (19)H1c10—C10—H2c10105.7788
N1—C1—C2119.01 (17)H1c10—C10—C11109.4707
O1—C1—C2120.17 (18)H2c10—C10—C11109.4709
H1c3—C3—C4116.2395C10—C11—H1c11109.4713
H1c3—C3—C2116.2397C10—C11—H2c11109.4711
C4—C3—C2127.52 (17)C10—C11—H3c11109.4707
C3—C4—H1c4119.7468H1c11—C11—H2c11109.4715
C3—C4—C5120.51 (17)H1c11—C11—H3c11109.4716
H1c4—C4—C5119.7456H2c11—C11—H3c11109.4712
C1—N1—C7124.68 (17)N2—C12a—H1c12a110.0628
C1—N1—C6119.43 (16)N2—C12a—H2c12a109.3494
C7—N1—C6114.79 (17)N2—C12a—C13a110.3 (2)
C2—C8—N3177.4 (2)H1c12a—C12a—H2c12a108.1807
C1—C2—C3120.15 (16)H1c12a—C12a—C13a109.4711
C1—C2—C8121.00 (18)H2c12a—C12a—C13a109.4714
C3—C2—C8118.23 (18)C12a—C13a—H1c13a109.4716
C5—N2—C9120.55 (16)C12a—C13a—H2c13a109.4709
C5—N2—C12a121.25 (19)C12a—C13a—C14a108.7 (4)
C5—N2—C12b117.5 (5)H1c13a—C13a—H2c13a110.2327
C9—N2—C12a117.31 (19)H1c13a—C13a—C14a109.4711
C9—N2—C12b112.9 (4)H2c13a—C13a—C14a109.4713
C4—C5—N2127.39 (17)C13a—C14a—H2c14a109.4714
C4—C5—H5116.3055C13a—C14a—H1c14a109.4717
N2—C5—H5116.3064C13a—C14a—H3c14a109.4712
N1—C7—H1c7109.4707H2c14a—C14a—H1c14a109.4709
N1—C7—H2c7109.4708H2c14a—C14a—H3c14a109.4711
N1—C7—H3c7109.4714N2—C12b—H1c12b112.2217
H1c7—C7—H2c7109.471N2—C12b—H2c12b112.6045
H1c7—C7—H3c7109.4722N2—C12b—C13b104.8 (6)
H2c7—C7—H3c7109.4713H1c12b—C12b—H2c12b108.1808
N1—C6—H1c6109.4714H1c12b—C12b—C13b109.4711
N1—C6—H2c6109.4711H2c12b—C12b—C13b109.4714
N1—C6—H3c6109.472C12b—C13b—H1c13b109.4716
H1c6—C6—H2c6109.4709C12b—C13b—H2c13b109.471
H1c6—C6—H3c6109.4706C12b—C13b—C14b108.7 (8)
H2c6—C6—H3c6109.4713H1c13b—C13b—H2c13b110.2327
N2—C9—H1c9109.4719H1c13b—C13b—C14b109.4711
N2—C9—H2c9109.4712H2c13b—C13b—C14b109.4713
N2—C9—C10113.62 (15)C13b—C14b—H2c14b109.4714
H1c9—C9—H2c9104.974C13b—C14b—H1c14b109.4718
H1c9—C9—C10109.471C13b—C14b—H3c14b109.4712
H2c9—C9—C10109.4713H2c14b—C14b—H1c14b109.4709
C9—C10—H1c10109.4712H2c14b—C14b—H3c14b109.4711
C9—C10—H2c10109.4722H1c14b—C14b—H3c14b109.4709
C9—C10—C11112.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.463.375 (2)168
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H23N3O
Mr249.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.0177 (6), 14.0654 (9), 12.9008 (8)
β (°) 111.768 (2)
V3)1519.63 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.48 × 0.46 × 0.28
Data collection
DiffractometerRigaku R-AXIS RAPID/ZJUG
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.957, 0.981
No. of measured, independent and
observed [I > 3σ(I)] reflections
14122, 3321, 1412
Rint0.056
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.49
No. of reflections3321
No. of parameters171
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.14

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SIR97 (Altomare et al. , 1999), JANA2006 (Petricek et al., 2006), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.463.375 (2)168
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank Professor Jian-Ming Gu of Zhejiang University for the structure analysis.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBasheer, A., Yamataka, H., Ammal, S. C. & Rappoport, Z. (2007). J. Org. Chem. 72, 5297–5312.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBecker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.  CrossRef IUCr Journals Web of Science Google Scholar
First citationBouwman, E., Douziech, B., Gutierrez-Soto, L., Beretta, M., Driessen, W. L., Reedijk, J. & Mendoza-Diaz, G. (2000). Inorg. Chim. Acta, 304, 250–259.  Web of Science CSD CrossRef CAS Google Scholar
First citationBryson, T. A., Donelson, D. M., Dunlap, R. B., Fisher, R. R. & Eill, P. D. (1976). J. Org. Chem. 41, 2066–2067.  CrossRef PubMed CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, Q.-X., Song, H.-B. & Li, Z.-M. (2005). Acta Cryst. E61, o385–o386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPetricek, V., Dusek, M. & Palatinus, L. (2006). JANA2006. Institute of Physics, Praha, Czech Republic.  Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationWang, N., Wang, M., Liu, J., Jin, K., Chen, L. & Sun, L. (2009). Inorg. Chem. 48, 11551–11558.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1311
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds