organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1508-o1509

11-(4-Meth­­oxy­phen­yl)-3,3-di­methyl-2,3,4,5,10,11-hexa­hydro-1H-dibenzo[b,e][1,4]diazepin-1-one monohydrate

aChemistry Department, Obafemi Awolowo University, Ile-ife, Nigeria, bDepartment of Civil Engineering and Geological Sciences, and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, USA, and cChemistry and Industrial Chemistry Department, Bowen University, Iwo, Nigeria
*Correspondence e-mail: adeyemi01@yahoo.com

(Received 18 March 2012; accepted 13 April 2012; online 25 April 2012)

In the title compound, C22H24N2O2·H2O, the co-crystallized water mol­ecule inter­acts with the N and O atoms of the mol­ecule through Ow—H⋯N, Ow—H⋯O(meth­yl) and N—H⋯Ow hydrogen-bonding inter­actions. These hydrogen bonds, along with the inter­molecular N—H⋯O=C hydrogen-bonding inter­actions, connect the mol­ecules into a three-dimensional network. The dihedral angle between the two aromatic rings is 65.46 (10)°.

Related literature

For details of the synthesis, see: Hanze et al. (1963[Hanze, A. R., Strube, R. E. & Greig, M. E. (1963). J. Med. Chem. 6, 767-771.]); Rashed et al. (1993[Rashed, N., Sayed, M. & El-Ashry, E. S. H. (1993). J. Chin. Chem. Soc. 40, 189-194.]); Kolos et al. (2004[Kolos, N. N., Yurchenko, E. N., Orlov, V. D., Shishkina, S. V. & Shishkin, O. V. (2004). Chem. Heterocycl. Compd, 40, 1550-1559.]); Cortés et al. (2007[Cortés, C. E., Cornejo, A. L. V. & García, M. O. (2007). J. Heterocycl. Chem. 44, 183-187.]); Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]). For the biological activity of dibenzo[b,e][1,4]diazepinones, see: Beccalli et al. (2005[Beccalli, E. M., Broggini, G., Paladino, G. & Zoni, C. (2005). Tetrahedron, 61, 61-68.]); Farnet et al. (2005[Farnet, C. M., Dimitriadou, V. & Bachmann, B. O. (2005). US Patent Appl. 107363 A1.]); Joergensen et al. (1996[Joergensen, T. K., Andersen, K. E., Andersen, H. S., Hohlweg, R., Madsen, P. & Olsen, U. B. (1996). PCT Int. Appl. WO9631497 A1.]); McAlpine et al. (2008[McAlpine, J. B., Banskota, A. H. & Aouidate, M. (2008). US Patent Appl. 161291 A1.]); McGowan et al. (2009[McGowan, D., et al. (2009). Bioorg. Med. Chem. Lett. 19, 2492-2496.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24N2O2·H2O

  • Mr = 366.45

  • Monoclinic, P 21 /c

  • a = 10.684 (7) Å

  • b = 16.973 (12) Å

  • c = 11.174 (8) Å

  • β = 101.490 (9)°

  • V = 1986 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.04 × 0.02 × 0.01 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.244, Tmax = 0.323

  • 22692 measured reflections

  • 4529 independent reflections

  • 2187 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.106

  • S = 0.83

  • 4529 reflections

  • 257 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1Wi 0.86 2.14 2.994 (3) 170
O1W—H1B⋯N2ii 0.98 (3) 2.04 (3) 3.020 (3) 178.2 (14)
O1W—H1C⋯O2 0.99 (2) 1.85 (2) 2.832 (3) 170 (2)
N2—H2C⋯O1iii 0.949 (18) 2.099 (18) 3.047 (3) 177.4 (13)
Symmetry codes: (i) -x+2, -y, -z; (ii) x+1, y, z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Dibenzo[b,e][1,4]diazepinones are useful intermediates in the synthesis of pharmaceuticals. For example, dibenzo[b,e][1,4]diazepin-11-ones are useful intermediates in the preparation of dibenzo[1,4]diazepines (Hanze et al., 1963). They display wide variety of biological properties, including antidepressant (Beccalli et al., 2005), antimicrobial (Farnet et al., 2005), analgesic and anti-inflammatory (Joergensen et al., 1996), antitumor (McAlpine et al., 2008) activities, while the dibenzodiazepin-1-ones are hepatitis C virus (HCV) NS5B polymerase inhibitors (McGowan et al., 2009). In view of our interest in bioactivity of nitrogen-containing heterocyclic compounds (see: Ajani et al., 2010), we report here the microwave-assisted synthesis and the crystal structure of the title compound 1.

Related literature top

For details of the synthesis, see: Hanze et al. (1963); Rashed et al. (1993); Kolos et al. (2004); Cortés et al. (2007); Ajani et al. (2010). For the biological activity of dibenzo[b,e][1,4]diazepinones, see: Beccalli et al. (2005); Farnet et al. (2005); Joergensen et al. (1996); McAlpine et al. (2008); McGowan et al. (2009).

Experimental top

A mixture of dimedone (2.0 g, 14.3 mmol) and o-phenylenediamine (1.54 g, 14.3 mmol) in absolute ethanol (30 ml), containing acetic acid (0.5 ml), in a beaker was pulse irradiated in a microwave oven for 5 min. and left to stand at room temperature for 1 h. Anisaldehyde (1.95 g, 14.3 mmol) was added to the reaction mixture and then subjected to microwave irradiation for 5 min. (TLC monitored). Evaporation of the solvent afforded a gummy product. Cold aqueous ethanol was added with scratching to give yellow precipitate (melting point 202–205 o C). Crystals of 1 suitable for X-ray analysis were obtained by slow evaporation of ethanol solution of the product.

Refinement top

The H atoms of the water molecule were located on a Fourier difference map, restrained by DFIX command 0.85 for O—H distances and by DFIX 1.39 for H···H distance, and refined as riding with Uiso(H) = 1.5Ueq(O). Other atoms were placed in their calculated positions, with C—H = 0.93 or 0.96 Å, and refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the labelled atoms; thermal ellipsoids are drawn at the 20% probability level.
[Figure 2] Fig. 2. The packing diagram (ball and stick model) of the title compound, viewed along c-direction. Hydrogen bonds are drawn as dashed lines.
[Figure 3] Fig. 3. Reaction scheme of synthesis of the title compound.
11-(4-Methoxyphenyl)-3,3-dimethyl-2,3,4,5,10,11-hexahydro-1H- dibenzo[b,e][1,4]diazepin-1-one monohydrate top
Crystal data top
C22H24N2O2·H2OF(000) = 784
Mr = 366.45Dx = 1.226 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2566 reflections
a = 10.684 (7) Åθ = 2.2–21.4°
b = 16.973 (12) ŵ = 0.08 mm1
c = 11.174 (8) ÅT = 296 K
β = 101.490 (9)°Rectangular tablet, light yellow
V = 1986 (2) Å30.04 × 0.02 × 0.01 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4529 independent reflections
Radiation source: fine-focus sealed tube2187 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ϕ and ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.244, Tmax = 0.323k = 2122
22692 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0442P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.83(Δ/σ)max < 0.001
4529 reflectionsΔρmax = 0.19 e Å3
257 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0082 (9)
Crystal data top
C22H24N2O2·H2OV = 1986 (2) Å3
Mr = 366.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.684 (7) ŵ = 0.08 mm1
b = 16.973 (12) ÅT = 296 K
c = 11.174 (8) Å0.04 × 0.02 × 0.01 mm
β = 101.490 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
4529 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2187 reflections with I > 2σ(I)
Tmin = 0.244, Tmax = 0.323Rint = 0.087
22692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.83Δρmax = 0.19 e Å3
4529 reflectionsΔρmin = 0.16 e Å3
257 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.69308 (13)0.00644 (8)0.04879 (12)0.0381 (4)
H1A0.67030.05090.01420.046*
N20.68575 (13)0.12181 (9)0.21811 (13)0.0341 (4)
H2C0.6841 (17)0.1561 (10)0.2848 (17)0.053 (6)*
O10.68552 (12)0.26436 (7)0.07109 (11)0.0459 (4)
O21.28931 (13)0.17001 (10)0.27104 (13)0.0787 (5)
O1W1.41964 (16)0.15384 (8)0.07513 (13)0.0520 (4)
H1C1.371 (2)0.1659 (14)0.140 (2)0.104 (9)*
H1B1.506 (3)0.1427 (15)0.120 (2)0.124 (11)*
C10.66212 (16)0.19349 (11)0.09321 (15)0.0346 (4)
C20.59266 (18)0.16858 (11)0.21814 (15)0.0425 (5)
H2A0.60570.20810.27720.051*
H2B0.50190.16610.21860.051*
C30.63682 (17)0.08909 (11)0.25676 (15)0.0401 (5)
C40.61823 (18)0.03053 (10)0.15837 (15)0.0398 (5)
H4A0.52750.02100.16580.048*
H4B0.65770.01900.17320.048*
C50.67258 (15)0.05645 (10)0.02950 (15)0.0318 (4)
C60.69591 (15)0.13400 (10)0.00061 (15)0.0307 (4)
C70.77701 (19)0.09265 (13)0.26960 (18)0.0574 (6)
H7A0.82920.10860.19330.086*
H7B0.78590.13000.33180.086*
H7C0.80360.04160.29170.086*
C80.5557 (2)0.06348 (13)0.37901 (17)0.0596 (6)
H8A0.46760.06100.37240.089*
H8B0.58320.01250.40050.089*
H8C0.56550.10090.44100.089*
C90.74429 (16)0.01265 (10)0.17528 (15)0.0361 (4)
C100.74023 (16)0.04797 (10)0.25838 (15)0.0349 (4)
C110.74741 (16)0.16327 (10)0.12753 (15)0.0322 (4)
H11A0.71980.21830.12830.039*
C120.79555 (19)0.08505 (11)0.21730 (17)0.0506 (5)
H12A0.79850.12540.16170.061*
C130.8421 (2)0.09834 (13)0.33978 (19)0.0606 (6)
H13A0.87570.14730.36660.073*
C140.8386 (2)0.03852 (13)0.42190 (18)0.0567 (6)
H14A0.86940.04690.50480.068*
C150.78916 (18)0.03402 (11)0.38124 (16)0.0451 (5)
H15A0.78860.07440.43740.054*
C160.89251 (16)0.16503 (10)0.16580 (15)0.0319 (4)
C170.94955 (17)0.19550 (11)0.27789 (16)0.0423 (5)
H17A0.89780.21490.32900.051*
C181.08113 (18)0.19834 (11)0.31741 (17)0.0439 (5)
H18A1.11670.21910.39360.053*
C191.15759 (18)0.17016 (13)0.24243 (18)0.0508 (5)
C201.1030 (2)0.14011 (16)0.1304 (2)0.0809 (9)
H20A1.15480.12130.07910.097*
C210.97209 (19)0.13747 (14)0.09301 (18)0.0625 (7)
H21A0.93700.11660.01680.075*
C221.35131 (19)0.19213 (14)0.38866 (18)0.0643 (7)
H22A1.44210.18920.39460.096*
H22B1.32650.15720.44740.096*
H22C1.32780.24510.40460.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0504 (10)0.0309 (9)0.0314 (9)0.0015 (7)0.0045 (7)0.0035 (7)
N20.0364 (9)0.0381 (9)0.0299 (8)0.0002 (7)0.0113 (7)0.0040 (7)
O10.0576 (9)0.0375 (8)0.0420 (8)0.0038 (7)0.0082 (6)0.0037 (6)
O20.0309 (8)0.1414 (15)0.0598 (11)0.0007 (9)0.0007 (7)0.0285 (10)
O1W0.0470 (9)0.0548 (9)0.0536 (10)0.0013 (7)0.0083 (8)0.0027 (7)
C10.0310 (10)0.0394 (11)0.0342 (11)0.0007 (8)0.0083 (8)0.0025 (9)
C20.0436 (12)0.0475 (12)0.0343 (11)0.0036 (9)0.0031 (9)0.0068 (9)
C30.0414 (11)0.0503 (12)0.0273 (10)0.0052 (9)0.0034 (8)0.0031 (9)
C40.0459 (11)0.0398 (11)0.0315 (10)0.0048 (9)0.0026 (8)0.0033 (8)
C50.0302 (10)0.0372 (11)0.0277 (10)0.0007 (8)0.0050 (8)0.0011 (8)
C60.0273 (9)0.0363 (11)0.0285 (10)0.0012 (8)0.0055 (7)0.0005 (8)
C70.0547 (14)0.0787 (16)0.0417 (12)0.0058 (12)0.0164 (10)0.0086 (11)
C80.0718 (15)0.0698 (15)0.0315 (11)0.0090 (12)0.0035 (10)0.0008 (10)
C90.0406 (11)0.0384 (11)0.0289 (10)0.0023 (9)0.0057 (8)0.0017 (8)
C100.0337 (10)0.0414 (11)0.0301 (10)0.0037 (8)0.0075 (8)0.0003 (9)
C110.0325 (10)0.0330 (10)0.0317 (10)0.0009 (8)0.0076 (8)0.0014 (8)
C120.0680 (15)0.0400 (12)0.0413 (12)0.0052 (10)0.0053 (10)0.0018 (10)
C130.0780 (17)0.0504 (14)0.0476 (14)0.0080 (12)0.0010 (12)0.0123 (11)
C140.0714 (16)0.0598 (15)0.0342 (12)0.0066 (12)0.0011 (10)0.0102 (11)
C150.0541 (13)0.0500 (13)0.0298 (11)0.0085 (10)0.0052 (9)0.0001 (9)
C160.0310 (10)0.0342 (10)0.0300 (10)0.0004 (8)0.0049 (8)0.0010 (8)
C170.0358 (11)0.0522 (12)0.0390 (12)0.0019 (9)0.0077 (9)0.0100 (9)
C180.0419 (12)0.0506 (12)0.0367 (11)0.0049 (10)0.0019 (9)0.0064 (9)
C190.0284 (11)0.0751 (15)0.0464 (13)0.0006 (10)0.0017 (9)0.0082 (11)
C200.0339 (13)0.153 (3)0.0556 (15)0.0073 (14)0.0094 (11)0.0419 (15)
C210.0357 (12)0.1076 (19)0.0418 (13)0.0026 (12)0.0020 (10)0.0293 (12)
C220.0390 (13)0.0911 (18)0.0553 (15)0.0085 (12)0.0084 (11)0.0041 (13)
Geometric parameters (Å, º) top
N1—C51.370 (2)C8—H8B0.9600
N1—C91.414 (2)C8—H8C0.9600
N1—H1A0.8600C9—C121.389 (2)
N2—C101.417 (2)C9—C101.392 (2)
N2—C111.490 (2)C10—C151.388 (2)
N2—H2C0.949 (19)C11—C161.524 (2)
O1—C11.243 (2)C11—H11A0.9800
O2—C191.380 (2)C12—C131.378 (3)
O2—C221.400 (2)C12—H12A0.9300
O1W—H1C1.00 (3)C13—C141.374 (3)
O1W—H1B0.97 (3)C13—H13A0.9300
C1—C61.449 (2)C14—C151.380 (3)
C1—C21.505 (2)C14—H14A0.9300
C2—C31.520 (3)C15—H15A0.9300
C2—H2A0.9700C16—C211.371 (2)
C2—H2B0.9700C16—C171.380 (2)
C3—C41.524 (2)C17—C181.388 (3)
C3—C81.528 (2)C17—H17A0.9300
C3—C71.534 (3)C18—C191.368 (3)
C4—C51.507 (2)C18—H18A0.9300
C4—H4A0.9700C19—C201.369 (3)
C4—H4B0.9700C20—C211.378 (3)
C5—C61.369 (2)C20—H20A0.9300
C6—C111.500 (2)C21—H21A0.9300
C7—H7A0.9600C22—H22A0.9600
C7—H7B0.9600C22—H22B0.9600
C7—H7C0.9600C22—H22C0.9600
C8—H8A0.9600
C5—N1—C9132.62 (15)C12—C9—N1116.87 (16)
C5—N1—H1A113.7C10—C9—N1123.65 (16)
C9—N1—H1A113.7C15—C10—C9118.53 (17)
C10—N2—C11115.11 (14)C15—C10—N2120.98 (16)
C10—N2—H2C111.4 (11)C9—C10—N2120.48 (16)
C11—N2—H2C108.9 (11)N2—C11—C6110.93 (14)
C19—O2—C22119.15 (16)N2—C11—C16112.42 (14)
H1C—O1W—H1B104 (2)C6—C11—C16115.65 (14)
O1—C1—C6121.29 (16)N2—C11—H11A105.7
O1—C1—C2119.90 (16)C6—C11—H11A105.7
C6—C1—C2118.76 (16)C16—C11—H11A105.7
C1—C2—C3112.89 (15)C13—C12—C9121.37 (19)
C1—C2—H2A109.0C13—C12—H12A119.3
C3—C2—H2A109.0C9—C12—H12A119.3
C1—C2—H2B109.0C14—C13—C12119.3 (2)
C3—C2—H2B109.0C14—C13—H13A120.3
H2A—C2—H2B107.8C12—C13—H13A120.3
C2—C3—C4106.36 (15)C13—C14—C15119.93 (19)
C2—C3—C8110.71 (15)C13—C14—H14A120.0
C4—C3—C8109.11 (16)C15—C14—H14A120.0
C2—C3—C7110.83 (15)C14—C15—C10121.43 (18)
C4—C3—C7111.29 (16)C14—C15—H15A119.3
C8—C3—C7108.53 (16)C10—C15—H15A119.3
C5—C4—C3114.71 (15)C21—C16—C17116.91 (17)
C5—C4—H4A108.6C21—C16—C11122.92 (16)
C3—C4—H4A108.6C17—C16—C11120.17 (15)
C5—C4—H4B108.6C16—C17—C18122.55 (17)
C3—C4—H4B108.6C16—C17—H17A118.7
H4A—C4—H4B107.6C18—C17—H17A118.7
C6—C5—N1126.45 (16)C19—C18—C17118.93 (18)
C6—C5—C4122.15 (15)C19—C18—H18A120.5
N1—C5—C4111.40 (15)C17—C18—H18A120.5
C5—C6—C1119.04 (16)C18—C19—C20119.49 (19)
C5—C6—C11124.43 (15)C18—C19—O2124.40 (18)
C1—C6—C11116.42 (16)C20—C19—O2116.12 (18)
C3—C7—H7A109.5C19—C20—C21120.7 (2)
C3—C7—H7B109.5C19—C20—H20A119.6
H7A—C7—H7B109.5C21—C20—H20A119.6
C3—C7—H7C109.5C16—C21—C20121.38 (19)
H7A—C7—H7C109.5C16—C21—H21A119.3
H7B—C7—H7C109.5C20—C21—H21A119.3
C3—C8—H8A109.5O2—C22—H22A109.5
C3—C8—H8B109.5O2—C22—H22B109.5
H8A—C8—H8B109.5H22A—C22—H22B109.5
C3—C8—H8C109.5O2—C22—H22C109.5
H8A—C8—H8C109.5H22A—C22—H22C109.5
H8B—C8—H8C109.5H22B—C22—H22C109.5
C12—C9—C10119.41 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wi0.862.142.994 (3)170
O1W—H1B···N2ii0.98 (3)2.04 (3)3.020 (3)178.2 (14)
O1W—H1C···O20.99 (2)1.85 (2)2.832 (3)170 (2)
N2—H2C···O1iii0.949 (18)2.099 (18)3.047 (3)177.4 (13)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC22H24N2O2·H2O
Mr366.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)10.684 (7), 16.973 (12), 11.174 (8)
β (°) 101.490 (9)
V3)1986 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.04 × 0.02 × 0.01
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.244, 0.323
No. of measured, independent and
observed [I > 2σ(I)] reflections
22692, 4529, 2187
Rint0.087
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.106, 0.83
No. of reflections4529
No. of parameters257
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1Wi0.862.142.994 (3)170
O1W—H1B···N2ii0.98 (3)2.04 (3)3.020 (3)178.2 (14)
O1W—H1C···O20.99 (2)1.85 (2)2.832 (3)170 (2)
N2—H2C···O1iii0.949 (18)2.099 (18)3.047 (3)177.4 (13)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

We thank the Central Science Laboratory, Obafemi Awolowo University, Ile-ife, for supporting this study.

References

First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBeccalli, E. M., Broggini, G., Paladino, G. & Zoni, C. (2005). Tetrahedron, 61, 61–68.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCortés, C. E., Cornejo, A. L. V. & García, M. O. (2007). J. Heterocycl. Chem. 44, 183–187.  Google Scholar
First citationFarnet, C. M., Dimitriadou, V. & Bachmann, B. O. (2005). US Patent Appl. 107363 A1.  Google Scholar
First citationHanze, A. R., Strube, R. E. & Greig, M. E. (1963). J. Med. Chem. 6, 767–771.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJoergensen, T. K., Andersen, K. E., Andersen, H. S., Hohlweg, R., Madsen, P. & Olsen, U. B. (1996). PCT Int. Appl. WO9631497 A1.  Google Scholar
First citationKolos, N. N., Yurchenko, E. N., Orlov, V. D., Shishkina, S. V. & Shishkin, O. V. (2004). Chem. Heterocycl. Compd, 40, 1550–1559.  CrossRef CAS Google Scholar
First citationMcAlpine, J. B., Banskota, A. H. & Aouidate, M. (2008). US Patent Appl. 161291 A1.  Google Scholar
First citationMcGowan, D., et al. (2009). Bioorg. Med. Chem. Lett. 19, 2492–2496.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRashed, N., Sayed, M. & El-Ashry, E. S. H. (1993). J. Chin. Chem. Soc. 40, 189–194.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Pages o1508-o1509
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds