organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1343

N-[4-(Di­methyl­amino)­benzyl­­idene]-4H-1,2,4-triazol-4-amine

aCollege of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, Ninxia, People's Republic of China
*Correspondence e-mail: zhouhl@nxu.edu.cn

(Received 1 April 2012; accepted 3 April 2012; online 13 April 2012)

The title compound, C11H13N5, is a Schiff base synthesized by the reaction of 4-amino-4H-1,2,4-triazole and 4-(dimethyl­amino)­benzaldehyde. The dihedral angle between the benzene and triazole rings is 43.09 (11)°. The crystal structure displays weak C—H⋯N inter­actions.

Related literature

For the biological activity of triazole derivatives, see: Modzelewska & Kalabun (1999[Modzelewska, B. & Kalabun, J. (1999). Pharmazie, 54, 503-505.]); Rollas et al. (1993[Rollas, S., Kalyoncuoglu, N., Sur-Altiner, D. & Yegenoglu, Y. (1993). Pharmazie, 48, 308-309.]); Todoulou et al. (1994[Todoulou, O. G., Papadaki-Valiraki, A. E., Ikeda, S. & Clercq, E. D. (1994). Eur. J. Med. Chem. 29, 611-620.]); Demirbas et al. (2002[Demirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717-3723.]); Kahveci et al. (2003[Kahveci, B., Bekircan, O., Serdar, M. & Ikizler, A. A. (2003). Indian J. Chem. Sect. B, 42, 1527-1530.]). For 4-amino-1,2,4-triazole Schiff bases, see: Desenko & Khim (1995[Desenko, S. M. & Khim, G. S. (1995). Chem. Heterocycl. Comput. pp. 2-24.]); Kargin et al. (1988[Kargin, Y. M., Kitaeva, M. Y., Latypova, V. Z., Vafina, A. A., Zaripova, R. M. & Il'yasov, A. V. (1988). Izv. Akad. Nauk SSSR Ser. Khim. 3, 607-611.]).

[Scheme 1]

Experimental

Crystal data
  • C11H13N5

  • Mr = 215.26

  • Monoclinic, P 21 /c

  • a = 10.3665 (16) Å

  • b = 11.1585 (19) Å

  • c = 9.5248 (12) Å

  • β = 90.257 (1)°

  • V = 1101.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.52 × 0.15 × 0.11 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.991

  • 5465 measured reflections

  • 1940 independent reflections

  • 1184 reflections with I > 2σ(I)

  • Rint = 0.062

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.119

  • S = 1.00

  • 1940 reflections

  • 148 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N4i 0.93 2.57 3.448 (3) 157
C2—H2⋯N2ii 0.93 2.43 3.284 (3) 152
C11—H11B⋯N1iii 0.96 2.60 3.543 (3) 166
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) x+1, y, z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

1,2,4-Triazole and their derivatives have been used as starting materials for synthesis of many heterocycles. The aroyl Schiff bases of 4-amino-1,2,4-triazole have received considerable attention over the past few decades (Desenko et al., 1995; Kargin et al., 1988; Modzelewska & Kalabun, 1999). In recent years, various 1,2,4-triazoles and their derivatives have been found to be associated with diverse pharmacological activities such as anticonvulsant, antifungal, anticancer, anti-inflammatory and antibacterial (Rollas et al., 1993; Todoulou et al., 1994). The present X-ray crystal structure analysis was undertaken in order to study the stereochemistry and crystal packing of the title compound (I).

The molecular structure and the atom-numbering scheme of the title compound are shown in Fig. 1. In the molecule, all bond lengths and angles are normal. As shown in Fig 1, the title compound is composed of two planar segments. One segment is a triazole ring, which is contains N3, C1, N2, C2, N1, and another segment is a benzene ring. The dihedral angle between the two planar segments is 43.09 (11)°. In the triazole ring, the N1=C2 and N2=C1 bonds display double-bond character, with bond distances of 1.303 (3) and 1.295 (2) Å, respectively.

Related literature top

For the biological activity of triazole derivatives, see: Modzelewska & Kalabun (1999); Rollas et al. (1993); Todoulou et al. (1994); Demirbas et al. (2002); Kahveci et al. (2003). For 4-amino-1,2,4-triazole Schiff bases, see: Desenko & Khim (1995); Kargin et al. (1988).

Experimental top

A mixture of 4-amino-4H-1,2,4-triazole 1 (0.51 g, 6 mmol) and 4-Dimethylaminobenzaldehyde (0.85 g, 6 mmol) was reacted in 40 ml ethanol at 353 K for 0.3 h. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the ethanol solution.

Refinement top

The H atoms were positioned geometrically, with C—H distances of 0.93–0.96 Å for aromatic, methylene and methyl H atoms, respectively, and Uiso(H) = 1.2–1.5Ueq of the parent atom.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius.
N-[4-(Dimethylamino)benzylidene]-4H-1,2,4-triazol-4-amine top
Crystal data top
C11H13N5F(000) = 456
Mr = 215.26Dx = 1.298 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1214 reflections
a = 10.3665 (16) Åθ = 2.7–23.0°
b = 11.1585 (19) ŵ = 0.08 mm1
c = 9.5248 (12) ÅT = 298 K
β = 90.257 (1)°Cuboid, colourless
V = 1101.8 (3) Å30.52 × 0.15 × 0.11 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1940 independent reflections
Radiation source: fine-focus sealed tube1184 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.957, Tmax = 0.991k = 139
5465 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0462P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1940 reflectionsΔρmax = 0.17 e Å3
148 parametersΔρmin = 0.18 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.086 (5)
Crystal data top
C11H13N5V = 1101.8 (3) Å3
Mr = 215.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.3665 (16) ŵ = 0.08 mm1
b = 11.1585 (19) ÅT = 298 K
c = 9.5248 (12) Å0.52 × 0.15 × 0.11 mm
β = 90.257 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1940 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1184 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.991Rint = 0.062
5465 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
1940 reflectionsΔρmin = 0.18 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.20167 (17)0.23656 (19)0.4358 (2)0.0665 (6)
N20.24339 (17)0.13578 (17)0.36475 (19)0.0599 (5)
N30.34969 (14)0.14765 (14)0.56204 (17)0.0461 (4)
N40.43764 (14)0.11434 (15)0.66817 (17)0.0498 (5)
N50.87803 (15)0.16192 (15)1.14369 (18)0.0590 (5)
C10.33047 (19)0.08539 (19)0.4428 (2)0.0540 (6)
H10.37400.01540.41950.065*
C20.26690 (19)0.2406 (2)0.5530 (2)0.0588 (6)
H20.25760.29960.62120.071*
C30.49452 (17)0.20274 (18)0.7270 (2)0.0469 (5)
H30.47510.27970.69590.056*
C40.58726 (17)0.18934 (17)0.8392 (2)0.0437 (5)
C50.61841 (19)0.07978 (19)0.8997 (2)0.0539 (6)
H50.57440.01140.87070.065*
C60.7122 (2)0.06956 (19)1.0008 (2)0.0581 (6)
H60.73010.00511.03960.070*
C70.78200 (17)0.17091 (18)1.0468 (2)0.0458 (5)
C80.74731 (17)0.28123 (18)0.9884 (2)0.0491 (6)
H80.78900.35041.01860.059*
C90.65320 (18)0.28964 (18)0.8876 (2)0.0477 (6)
H90.63290.36440.85050.057*
C100.9193 (3)0.0473 (2)1.1988 (3)0.0853 (9)
H10A0.85250.01441.25660.128*
H10B0.99630.05791.25390.128*
H10C0.93660.00641.12240.128*
C110.9429 (2)0.2687 (2)1.1945 (2)0.0691 (7)
H11A0.98610.30741.11800.104*
H11B1.00490.24681.26520.104*
H11C0.88060.32251.23400.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0658 (12)0.0829 (14)0.0507 (13)0.0148 (10)0.0210 (10)0.0039 (11)
N20.0641 (11)0.0706 (13)0.0448 (12)0.0003 (10)0.0169 (9)0.0003 (10)
N30.0464 (9)0.0559 (11)0.0359 (10)0.0001 (8)0.0119 (8)0.0019 (9)
N40.0521 (10)0.0569 (11)0.0403 (11)0.0002 (8)0.0165 (8)0.0024 (9)
N50.0578 (10)0.0678 (13)0.0512 (12)0.0076 (10)0.0251 (9)0.0019 (10)
C10.0651 (13)0.0536 (13)0.0432 (14)0.0038 (11)0.0132 (11)0.0005 (11)
C20.0547 (13)0.0712 (16)0.0503 (15)0.0103 (12)0.0140 (11)0.0079 (12)
C30.0441 (11)0.0530 (13)0.0436 (14)0.0054 (10)0.0059 (10)0.0006 (11)
C40.0454 (11)0.0481 (12)0.0374 (13)0.0048 (9)0.0075 (9)0.0018 (10)
C50.0642 (13)0.0516 (13)0.0456 (14)0.0066 (10)0.0164 (11)0.0038 (11)
C60.0744 (14)0.0508 (13)0.0488 (14)0.0075 (11)0.0204 (12)0.0025 (11)
C70.0472 (11)0.0536 (13)0.0364 (13)0.0077 (10)0.0068 (9)0.0039 (10)
C80.0462 (11)0.0535 (13)0.0475 (14)0.0016 (10)0.0104 (10)0.0063 (11)
C90.0489 (11)0.0493 (13)0.0448 (14)0.0051 (9)0.0099 (10)0.0002 (10)
C100.0898 (17)0.089 (2)0.0766 (19)0.0287 (15)0.0392 (15)0.0001 (16)
C110.0548 (13)0.0922 (18)0.0602 (17)0.0066 (12)0.0212 (12)0.0041 (14)
Geometric parameters (Å, º) top
N1—C21.303 (3)C4—C91.389 (3)
N1—N21.383 (2)C5—C61.370 (3)
N2—C11.295 (2)C5—H50.9300
N3—C11.346 (2)C6—C71.411 (3)
N3—C21.349 (2)C6—H60.9300
N3—N41.408 (2)C7—C81.397 (3)
N4—C31.277 (2)C8—C91.369 (3)
N5—C71.358 (2)C8—H80.9300
N5—C101.446 (3)C9—H90.9300
N5—C111.450 (3)C10—H10A0.9600
C1—H10.9300C10—H10B0.9600
C2—H20.9300C10—H10C0.9600
C3—C41.442 (3)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.389 (3)C11—H11C0.9600
C2—N1—N2106.54 (17)C5—C6—C7120.83 (19)
C1—N2—N1106.92 (17)C5—C6—H6119.6
C1—N3—C2104.55 (17)C7—C6—H6119.6
C1—N3—N4124.23 (17)N5—C7—C8121.48 (18)
C2—N3—N4131.21 (17)N5—C7—C6121.64 (18)
C3—N4—N3114.03 (17)C8—C7—C6116.88 (18)
C7—N5—C10121.78 (18)C9—C8—C7121.39 (19)
C7—N5—C11120.24 (17)C9—C8—H8119.3
C10—N5—C11117.98 (18)C7—C8—H8119.3
N2—C1—N3111.1 (2)C8—C9—C4121.70 (19)
N2—C1—H1124.4C8—C9—H9119.1
N3—C1—H1124.4C4—C9—H9119.1
N1—C2—N3110.9 (2)N5—C10—H10A109.5
N1—C2—H2124.6N5—C10—H10B109.5
N3—C2—H2124.6H10A—C10—H10B109.5
N4—C3—C4123.37 (19)N5—C10—H10C109.5
N4—C3—H3118.3H10A—C10—H10C109.5
C4—C3—H3118.3H10B—C10—H10C109.5
C5—C4—C9117.30 (18)N5—C11—H11A109.5
C5—C4—C3123.47 (18)N5—C11—H11B109.5
C9—C4—C3119.19 (18)H11A—C11—H11B109.5
C6—C5—C4121.84 (19)N5—C11—H11C109.5
C6—C5—H5119.1H11A—C11—H11C109.5
C4—C5—H5119.1H11B—C11—H11C109.5
C2—N1—N2—C10.1 (2)C3—C4—C5—C6176.31 (19)
C1—N3—N4—C3143.42 (19)C4—C5—C6—C70.5 (3)
C2—N3—N4—C338.0 (3)C10—N5—C7—C8176.5 (2)
N1—N2—C1—N30.3 (2)C11—N5—C7—C83.2 (3)
C2—N3—C1—N20.5 (2)C10—N5—C7—C63.8 (3)
N4—N3—C1—N2179.38 (16)C11—N5—C7—C6176.49 (19)
N2—N1—C2—N30.2 (2)C5—C6—C7—N5177.92 (19)
C1—N3—C2—N10.4 (2)C5—C6—C7—C82.4 (3)
N4—N3—C2—N1179.24 (17)N5—C7—C8—C9177.99 (18)
N3—N4—C3—C4179.31 (16)C6—C7—C8—C92.3 (3)
N4—C3—C4—C53.8 (3)C7—C8—C9—C40.4 (3)
N4—C3—C4—C9173.89 (18)C5—C4—C9—C81.5 (3)
C9—C4—C5—C61.4 (3)C3—C4—C9—C8176.33 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N4i0.932.573.448 (3)157
C2—H2···N2ii0.932.433.284 (3)152
C11—H11B···N1iii0.962.603.543 (3)166
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC11H13N5
Mr215.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)10.3665 (16), 11.1585 (19), 9.5248 (12)
β (°) 90.257 (1)
V3)1101.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.52 × 0.15 × 0.11
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.957, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5465, 1940, 1184
Rint0.062
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.119, 1.00
No. of reflections1940
No. of parameters148
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.18

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N4i0.932.573.448 (3)157
C2—H2···N2ii0.932.433.284 (3)152
C11—H11B···N1iii0.962.603.543 (3)166
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y, z+1.
 

Acknowledgements

We thank the Instrumental Analysis Center of LiaoCheng University for the data collection on the Bruker SMART CCD facility.

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDemirbas, N., Ugurluoglu, R. & Demirbas, A. (2002). Bioorg. Med. Chem. 10, 3717–3723.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDesenko, S. M. & Khim, G. S. (1995). Chem. Heterocycl. Comput. pp. 2–24.  Google Scholar
First citationKahveci, B., Bekircan, O., Serdar, M. & Ikizler, A. A. (2003). Indian J. Chem. Sect. B, 42, 1527–1530.  Google Scholar
First citationKargin, Y. M., Kitaeva, M. Y., Latypova, V. Z., Vafina, A. A., Zaripova, R. M. & Il'yasov, A. V. (1988). Izv. Akad. Nauk SSSR Ser. Khim. 3, 607–611.  Google Scholar
First citationModzelewska, B. & Kalabun, J. (1999). Pharmazie, 54, 503–505.  Web of Science PubMed Google Scholar
First citationRollas, S., Kalyoncuoglu, N., Sur-Altiner, D. & Yegenoglu, Y. (1993). Pharmazie, 48, 308–309.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTodoulou, O. G., Papadaki-Valiraki, A. E., Ikeda, S. & Clercq, E. D. (1994). Eur. J. Med. Chem. 29, 611–620.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1343
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds