organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1434

1,1′-(Butane-1,4-di­yl)bis­­[2-(pyridin-2-yl)-1H-benzimidazole]

aState Key Lab. Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, People's Republic of China
*Correspondence e-mail: xiehongzhen@nbu.edu.cn

(Received 9 April 2012; accepted 12 April 2012; online 18 April 2012)

The complete mol­ecule of the title compound, C28H24N6, is generated by inversion symmetry with the inversion centre located at the mid-point of the central C–C bond of the butanediyl unit. The benzimidazole and pyridine rings are almost coplanar, the dihedral angle between their mean planes being 6.86 (11)°.

Related literature

For the synthesis, see: Liu et al. (2010[Liu, H.-Y., Wu, H., Ma, J.-F., Liu, Y.-Y., Liu, B. & Yang, J. (2010). Cryst. Growth Des. 10, 4795-4805.]). For background to this study, see: Barnett & Champness (2003[Barnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145-168.]); Tong et al. (2009[Tong, X.-L., Wang, D.-Z., Hu, T.-L., Song, W.-C., Tao, Y. & Bu, X.-H. (2009). Cryst. Growth Des. 9, 2280-2286.]).

[Scheme 1]

Experimental

Crystal data
  • C28H24N6

  • Mr = 444.53

  • Monoclinic, P 21 /n

  • a = 6.5617 (7) Å

  • b = 13.9716 (13) Å

  • c = 12.3351 (8) Å

  • β = 96.466 (7)°

  • V = 1123.66 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.42 × 0.18 × 0.15 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.695, Tmax = 0.856

  • 6268 measured reflections

  • 2684 independent reflections

  • 1314 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.146

  • S = 1.02

  • 2684 reflections

  • 162 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). Crystal Structure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The long spacer ligands, particularly the flexible N-bridging donors have been investigated as auxiliary ligands for the construction of novel MOFs [Liu et al., 2010; Barnett et al., 2003; Tong et al., 2009]. As part of our ongoing studies, the title compound was synthesized and characterized by X-ray diffraction.

The complete molecule of the title compound, C28H24N6, is generated by crystallographic inversion symmetry and the central C—C bond of the butanediyl unit is bisected by the inversion symmetry. The dihedral angle between the benzimidazole ring system and the pyridine ring is 6.86 (11)°, which indicates that they are almost coplanar.

Related literature top

For the synthesis, see: Liu et al. (2010). For background to this study, see: Barnett & Champness (2003); Tong et al. (2009).

Experimental top

According to the literature [Liu et al., 2010], 2-(2-pyridyl)benzimidazole (7.80 g) and NaOH (1.68 g) in DMSO (20 ml) were stirred at 60°C for 0.5 h, and then 1,4-dibromobutane (4.32 g) was added. The mixture was stirred at 60°C for 12 h, and then poured into 400 ml of ice water after being cooled to room temperature. The yellow solid was obtained and isolated by filtration after drying in air. The above products were recrystallized in methanol and yellow crystals of the title compounds were obtained.

Refinement top

The H atoms bonded to C except for C14 were placed at calculated positions and refined in riding mode with Uiso(H)=1.2Ueq(C). The H atoms of C14 were located at difference Fourier maps and refined freely.

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP view of complex molecule of (I). Displacement ellipsoids are drawn at the 45% probability level. H atoms were omitted for clarity.
1,1'-(butane-1,4-diyl)bis[2-(pyridin-2-yl)-1H-benzimidazole] top
Crystal data top
C28H24N6F(000) = 468
Mr = 444.53Dx = 1.314 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6230 reflections
a = 6.5617 (7) Åθ = 3.1–29.7°
b = 13.9716 (13) ŵ = 0.08 mm1
c = 12.3351 (8) ÅT = 298 K
β = 96.466 (7)°Block, yellow
V = 1123.66 (17) Å30.42 × 0.18 × 0.15 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2684 independent reflections
Radiation source: fine-focus sealed tube1314 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 29.3°, θmin = 2.9°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 78
Tmin = 0.695, Tmax = 0.856k = 1418
6268 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.0549P]
where P = (Fo2 + 2Fc2)/3
2684 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C28H24N6V = 1123.66 (17) Å3
Mr = 444.53Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.5617 (7) ŵ = 0.08 mm1
b = 13.9716 (13) ÅT = 298 K
c = 12.3351 (8) Å0.42 × 0.18 × 0.15 mm
β = 96.466 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2684 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1314 reflections with I > 2σ(I)
Tmin = 0.695, Tmax = 0.856Rint = 0.055
6268 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.146H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.34 e Å3
2684 reflectionsΔρmin = 0.20 e Å3
162 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2449 (3)0.71889 (16)0.85672 (16)0.0593 (6)
N20.0037 (3)0.59178 (15)0.65051 (13)0.0501 (6)
N30.1079 (3)0.59573 (14)0.82913 (13)0.0436 (5)
C10.2217 (4)0.68146 (17)0.75907 (18)0.0465 (6)
C20.3657 (4)0.6937 (2)0.6693 (2)0.0572 (7)
H20.34420.66750.60220.069*
C30.5399 (4)0.7445 (2)0.6803 (2)0.0663 (8)
H30.63930.75250.62100.080*
C40.5664 (5)0.7834 (2)0.7785 (3)0.0693 (8)
H40.68350.81860.78770.083*
C50.4172 (5)0.7695 (2)0.8636 (2)0.0702 (9)
H50.43600.79680.93050.084*
C60.0367 (4)0.62376 (17)0.74647 (17)0.0442 (6)
C70.1763 (4)0.53894 (18)0.66954 (17)0.0437 (6)
C80.2838 (4)0.48915 (19)0.59693 (18)0.0534 (7)
H80.23710.48710.52290.064*
C90.4599 (4)0.4432 (2)0.6369 (2)0.0567 (7)
H90.53420.40990.58930.068*
C100.5305 (4)0.4451 (2)0.7475 (2)0.0580 (7)
H100.65090.41310.77250.070*
C110.4249 (4)0.49381 (19)0.82047 (18)0.0525 (7)
H110.47130.49530.89450.063*
C120.2482 (4)0.54014 (17)0.77956 (16)0.0415 (6)
C130.1227 (4)0.61541 (18)0.94648 (15)0.0469 (7)
H13B0.08800.68200.95730.056*
H13A0.26330.60570.97820.056*
C140.0179 (6)0.5522 (2)1.0057 (2)0.0620 (9)
H14B0.005 (3)0.5697 (16)1.0838 (18)0.054 (7)*
H14A0.173 (5)0.544 (2)0.978 (2)0.099 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0668 (17)0.0549 (15)0.0575 (12)0.0066 (13)0.0128 (11)0.0001 (11)
N20.0581 (14)0.0578 (14)0.0344 (10)0.0035 (12)0.0047 (9)0.0026 (9)
N30.0506 (13)0.0476 (12)0.0328 (10)0.0050 (11)0.0055 (9)0.0015 (9)
C10.0516 (17)0.0354 (14)0.0543 (14)0.0035 (13)0.0138 (12)0.0039 (12)
C20.0607 (19)0.0516 (17)0.0591 (15)0.0017 (15)0.0058 (13)0.0040 (14)
C30.061 (2)0.0537 (18)0.0818 (19)0.0009 (16)0.0008 (16)0.0112 (16)
C40.0522 (19)0.0499 (18)0.108 (2)0.0101 (15)0.0175 (17)0.0112 (18)
C50.085 (2)0.056 (2)0.0748 (19)0.0079 (18)0.0293 (18)0.0059 (15)
C60.0505 (16)0.0444 (15)0.0381 (12)0.0069 (13)0.0066 (11)0.0047 (11)
C70.0423 (15)0.0469 (15)0.0423 (13)0.0043 (12)0.0069 (11)0.0043 (11)
C80.0600 (18)0.0629 (19)0.0387 (12)0.0069 (16)0.0115 (12)0.0005 (12)
C90.0580 (19)0.0595 (18)0.0566 (15)0.0009 (15)0.0234 (13)0.0076 (14)
C100.0474 (17)0.0620 (18)0.0649 (16)0.0016 (14)0.0077 (13)0.0059 (14)
C110.0534 (17)0.0628 (18)0.0399 (12)0.0063 (15)0.0005 (11)0.0032 (13)
C120.0472 (15)0.0411 (14)0.0381 (12)0.0051 (13)0.0129 (11)0.0016 (11)
C130.0600 (16)0.0503 (16)0.0303 (11)0.0095 (13)0.0046 (10)0.0044 (11)
C140.095 (3)0.0579 (17)0.0345 (13)0.0119 (19)0.0139 (14)0.0042 (14)
Geometric parameters (Å, º) top
N1—C11.337 (3)C7—C121.386 (3)
N1—C51.344 (3)C7—C81.388 (3)
N2—C61.306 (3)C8—C91.364 (3)
N2—C71.391 (3)C8—H80.9300
N3—C61.370 (3)C9—C101.390 (3)
N3—C121.397 (3)C9—H90.9300
N3—C131.466 (2)C10—C111.376 (3)
C1—C21.383 (3)C10—H100.9300
C1—C61.480 (3)C11—C121.373 (3)
C2—C31.365 (4)C11—H110.9300
C2—H20.9300C13—C141.523 (3)
C3—C41.357 (4)C13—H13B0.9700
C3—H30.9300C13—H13A0.9700
C4—C51.366 (4)C14—C14i1.486 (6)
C4—H40.9300C14—H14B0.99 (2)
C5—H50.9300C14—H14A1.04 (3)
C1—N1—C5116.4 (2)C9—C8—H8120.9
C6—N2—C7104.66 (19)C7—C8—H8120.9
C6—N3—C12105.58 (17)C8—C9—C10121.4 (2)
C6—N3—C13130.1 (2)C8—C9—H9119.3
C12—N3—C13124.27 (19)C10—C9—H9119.3
N1—C1—C2122.4 (2)C11—C10—C9121.0 (3)
N1—C1—C6119.0 (2)C11—C10—H10119.5
C2—C1—C6118.5 (2)C9—C10—H10119.5
C3—C2—C1119.3 (3)C12—C11—C10117.3 (2)
C3—C2—H2120.4C12—C11—H11121.3
C1—C2—H2120.4C10—C11—H11121.3
C4—C3—C2119.3 (3)C11—C12—C7122.3 (2)
C4—C3—H3120.3C11—C12—N3132.2 (2)
C2—C3—H3120.3C7—C12—N3105.5 (2)
C3—C4—C5118.4 (3)N3—C13—C14112.9 (2)
C3—C4—H4120.8N3—C13—H13B109.0
C5—C4—H4120.8C14—C13—H13B109.0
N1—C5—C4124.2 (3)N3—C13—H13A109.0
N1—C5—H5117.9C14—C13—H13A109.0
C4—C5—H5117.9H13B—C13—H13A107.8
N2—C6—N3113.9 (2)C14i—C14—C13114.4 (3)
N2—C6—C1120.2 (2)C14i—C14—H14B109.1 (14)
N3—C6—C1125.8 (2)C13—C14—H14B106.8 (13)
C12—C7—C8119.8 (2)C14i—C14—H14A90.9 (18)
C12—C7—N2110.35 (19)C13—C14—H14A122.1 (16)
C8—C7—N2129.9 (2)H14B—C14—H14A113 (2)
C9—C8—C7118.3 (2)
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC28H24N6
Mr444.53
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)6.5617 (7), 13.9716 (13), 12.3351 (8)
β (°) 96.466 (7)
V3)1123.66 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.18 × 0.15
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.695, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
6268, 2684, 1314
Rint0.055
(sin θ/λ)max1)0.688
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.146, 1.02
No. of reflections2684
No. of parameters162
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.20

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976).

 

Acknowledgements

The paper was sponsored by the K. C. Wong Magna Fund in Ningbo University, the Project of Nonprofit Technology & Research in Zhejiang (2011 C37010), the Ningbo Municipal Natural Science Foundation (grant No. 2010 A610160), the Subject Object (No. xk1070) and the Foundation (No. XYL11009) of Ningbo University.

References

First citationBarnett, S. A. & Champness, N. R. (2003). Coord. Chem. Rev. 246, 145–168.  Web of Science CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL–5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLiu, H.-Y., Wu, H., Ma, J.-F., Liu, Y.-Y., Liu, B. & Yang, J. (2010). Cryst. Growth Des. 10, 4795–4805.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). Crystal Structure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, X.-L., Wang, D.-Z., Hu, T.-L., Song, W.-C., Tao, Y. & Bu, X.-H. (2009). Cryst. Growth Des. 9, 2280–2286.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 5| May 2012| Page o1434
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds