metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ-ethane-1,2-diyl bis­­(pyridine-3-carboxyl­ate)](μ-tetra­fluorido­borato)silver(I)]

aDepartamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, bDepartamento de Física, Facultad de Ciencias Básicas, Universidad de Antofagasta, Casilla 170, Antofagasta, Chile, and cInstitut für Anorganische Chemie der Goethe-Universität Frankfurt, Max-von-Laue-Strasse 7, D-60438 Frankfurt am Main, Germany
*Correspondence e-mail: ivanbritob@yahoo.com

(Received 19 April 2012; accepted 24 April 2012; online 28 April 2012)

In the title compound, [Ag(BF4)(C14H12N2O4)]n, the coordination of the Ag+ ion is trigonal–bipyramidal with the N atoms of two ethane-1,2-diyl bis­(pyridine-3-carboxyl­ate) ligands in the apical positions and three F atoms belonging to different tetra­fluorido­borate anions in the equatorial plane. The material consists of infinite chains of [Ag(C14H12N2O4)] units running along [001], held together by BF4 bridging anions.

Related literature

For the crystal structure of the ethane-1,2-diyl bis­(pyridine-3-carboxyl­ate) ligand, see: Brito et al. (2010[Brito, I., Vallejos, J., López-Rodríguez, M. & Cárdenas, A. (2010). Acta Cryst. E66, o114.]). For background to coordination chemistry, see: Blake et al. (1999[Blake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.]); Brito et al. (2011[Brito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M., Bolte, M. & Llanos, J. (2011). Inorg. Chem. Commun. 14, 897-901.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(BF4)(C14H12N2O4)]

  • Mr = 466.94

  • Orthorhombic, P b c a

  • a = 15.2667 (11) Å

  • b = 6.7170 (4) Å

  • c = 30.8598 (16) Å

  • V = 3164.6 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.34 mm−1

  • T = 173 K

  • 0.16 × 0.04 × 0.04 mm

Data collection
  • Stoe IPDS-II two-circle diffractometer

  • Absorption correction: multi-scan (MULABS; Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.814, Tmax = 0.948

  • 27909 measured reflections

  • 2772 independent reflections

  • 1605 reflections with I > 2σ(I)

  • Rint = 0.115

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.144

  • S = 0.93

  • 2772 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 1.75 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—N11 2.145 (6)
Ag1—N23i 2.155 (6)
Ag1—F1ii 3.168 (9)
Ag1—F2 2.832 (8)
Ag1—F2iii 2.972 (7)
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design of polymeric organic-inorganic materials with novel topologies and structural motifs is of current interest in the field of coordination chemistry (Blake et al., 1999). This paper forms part of our continuing study of the synthesis, structural characterization and physical properties of coordination polymers (Brito et al., 2011). We report here the crystal structure of the title compound (Fig.1). It crystallizes as colorless needles, which were found to be stable to air and light. In the title compound, the coordination of the AgI atom is a trigonal bipyramid with the N atoms of two 1,2-diyl-bis(pyridine-3-carboxylate)ethane ligands in the apical positions and three F atoms belonging to different tetrafluoroborate anions in the equatorial plane. The Ag–N distances are 2.145 (6) and 2.155 (6) Å and the Ag–F distances are 2.832 (8) Å, 2.972 (7) Å and 3.168 (9) Å. The N–Ag–N angle [168.8 (3)°] is not far from being linear and the Ag—N vectors are almost perpendicular to the Ag—F vectors [76.7 (3)° to 103.1 (3)°]. The F–Ag–F angles are 106.4 (2)°, 120.7 (2)° and 127.4 (2)°. The molecular dimensions of the 1,2-bis(3-pyridyl)ethane ligand are within normal ranges and the ethylene moiety retains the gauche conformation (Brito et al., 2010). The material consists of infinite chains of [Ag(C14H12N2O4)] moieties running along [001] held together by BF4- bridging anions (Fig. 2).

Related literature top

For the crystal structure of the ethane-1,2-diyl bis(pyridine-3-carboxylate) ligand, see: Brito et al. (2010). For background to coordination chemistry, see: Blake et al. (1999); Brito et al. (2011).

Experimental top

A solution of AgBF4 (19.4 mg, 0.1 mmol) in water was slowly added to a solution of the ligand (27.2 mg, 0.1 mmol) in THF (4 ml). Colorless single crystals suitable for X-ray were obtained after a few days (82%).The FT—IR (KBr, cm-1): 1724 s, 1609, 1434 m, 1280 s, 742 m.

Refinement top

All H-atoms were positioned geometrically with C—H in the range of 0.95 or 0.99 Å and refined using a riding model with Uiso(H)= 1.2 Ueq(C).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Part of the polymeric structure and the atom-numbering scheme of the title compound. Displacement ellipsoids are shown at the 30% probability level. [Symmetry codes (i) x, 3/2 - y, -1/2 + z; (ii) 1/2 - x, 1/2 + y, z; (iii) 1/2 - x, -1/2 + y, z].
[Figure 2] Fig. 2. Infinite chains of [Ag(C14H12N2O4)] moieties running along [001] held together by BF4- bridging anions. The H-toms have been omitted for clarity.
Poly[[µ-ethane-1,2-diyl bis(pyridine-3-carboxylate)](µ-tetrafluoridoborato)silver(I)] top
Crystal data top
[Ag(BF4)(C14H12N2O4)]F(000) = 1840
Mr = 466.94Dx = 1.960 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 9495 reflections
a = 15.2667 (11) Åθ = 2.7–25.9°
b = 6.7170 (4) ŵ = 1.34 mm1
c = 30.8598 (16) ÅT = 173 K
V = 3164.6 (3) Å3Needle, colourless
Z = 80.16 × 0.04 × 0.04 mm
Data collection top
Stoe IPDS-II two-circle
diffractometer
2772 independent reflections
Radiation source: fine-focus sealed tube1605 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.115
ω scansθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 1818
Tmin = 0.814, Tmax = 0.948k = 77
27909 measured reflectionsl = 3636
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0668P)2]
where P = (Fo2 + 2Fc2)/3
2772 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 1.75 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
[Ag(BF4)(C14H12N2O4)]V = 3164.6 (3) Å3
Mr = 466.94Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.2667 (11) ŵ = 1.34 mm1
b = 6.7170 (4) ÅT = 173 K
c = 30.8598 (16) Å0.16 × 0.04 × 0.04 mm
Data collection top
Stoe IPDS-II two-circle
diffractometer
2772 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
1605 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.948Rint = 0.115
27909 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 0.93Δρmax = 1.75 e Å3
2772 reflectionsΔρmin = 1.14 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.32630 (5)0.68683 (11)0.122155 (18)0.0436 (2)
O10.1384 (4)0.6081 (9)0.27974 (18)0.0388 (14)
O20.2325 (3)0.4748 (8)0.32836 (16)0.0318 (13)
O30.1274 (4)0.7200 (9)0.46953 (18)0.0426 (15)
O40.2171 (3)0.6095 (9)0.41696 (16)0.0350 (13)
C10.2118 (6)0.5608 (13)0.2904 (2)0.0318 (19)
C20.1594 (5)0.4311 (13)0.3564 (2)0.0347 (19)
H2A0.17150.30600.37230.042*
H2B0.10650.40960.33850.042*
C30.1415 (5)0.5929 (15)0.3883 (2)0.038 (2)
H3A0.13170.72050.37300.046*
H3B0.08840.56110.40540.046*
C40.1992 (5)0.6804 (12)0.4566 (2)0.0305 (17)
N110.3421 (4)0.6597 (11)0.1910 (2)0.0385 (17)
C120.2759 (6)0.6318 (12)0.2184 (2)0.035 (2)
H120.21740.64080.20800.041*
C130.2907 (5)0.5899 (12)0.2618 (2)0.0287 (17)
C140.3766 (5)0.5786 (12)0.2780 (3)0.0310 (18)
H140.38810.54710.30740.037*
C150.4436 (5)0.6155 (12)0.2490 (3)0.036 (2)
H150.50270.61410.25860.044*
C160.4251 (6)0.6540 (14)0.2065 (3)0.042 (2)
H160.47230.67770.18710.050*
C210.2811 (5)0.7043 (13)0.4833 (2)0.0295 (17)
C220.2702 (6)0.7513 (12)0.5268 (2)0.032 (2)
H220.21260.76160.53820.039*
N230.3379 (5)0.7822 (10)0.5529 (2)0.0384 (17)
C240.4197 (6)0.7680 (13)0.5363 (3)0.041 (2)
H240.46820.79070.55490.049*
C250.4354 (6)0.7217 (14)0.4934 (3)0.040 (2)
H250.49360.71490.48270.048*
C260.3651 (5)0.6855 (13)0.4662 (2)0.0332 (17)
H260.37390.64900.43670.040*
B10.0651 (6)0.6709 (18)0.1252 (3)0.040 (2)
F10.0369 (5)0.8388 (12)0.1072 (3)0.107 (3)
F20.1447 (5)0.6209 (11)0.1101 (3)0.098 (3)
F30.0720 (6)0.7014 (14)0.1693 (2)0.110 (3)
F40.0034 (5)0.5200 (11)0.1204 (3)0.097 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0429 (4)0.0680 (5)0.0198 (3)0.0014 (4)0.0011 (3)0.0042 (3)
O10.021 (3)0.065 (4)0.030 (3)0.002 (3)0.003 (2)0.007 (3)
O20.030 (3)0.046 (4)0.019 (3)0.002 (2)0.003 (2)0.003 (2)
O30.026 (3)0.068 (4)0.033 (3)0.005 (3)0.003 (3)0.012 (3)
O40.029 (3)0.059 (4)0.018 (3)0.002 (2)0.002 (2)0.002 (2)
C10.035 (5)0.040 (5)0.020 (4)0.003 (4)0.003 (3)0.001 (4)
C20.032 (5)0.054 (5)0.017 (4)0.009 (4)0.006 (3)0.001 (4)
C30.024 (4)0.067 (6)0.024 (4)0.003 (4)0.004 (3)0.010 (4)
C40.040 (5)0.033 (4)0.018 (3)0.004 (4)0.000 (3)0.006 (4)
N110.036 (4)0.053 (5)0.026 (3)0.002 (4)0.004 (3)0.000 (3)
C120.030 (4)0.050 (6)0.024 (4)0.004 (4)0.002 (3)0.003 (4)
C130.025 (4)0.040 (5)0.021 (4)0.002 (3)0.003 (3)0.004 (3)
C140.032 (5)0.039 (5)0.022 (4)0.001 (4)0.002 (3)0.001 (4)
C150.030 (5)0.054 (5)0.025 (4)0.001 (3)0.002 (4)0.002 (4)
C160.029 (4)0.069 (7)0.027 (4)0.001 (4)0.006 (3)0.002 (4)
C210.025 (4)0.044 (5)0.019 (3)0.002 (4)0.001 (3)0.000 (4)
C220.031 (5)0.047 (6)0.018 (4)0.001 (3)0.001 (3)0.002 (3)
N230.034 (4)0.051 (4)0.030 (3)0.001 (3)0.000 (3)0.002 (3)
C240.030 (5)0.065 (7)0.029 (4)0.003 (4)0.005 (4)0.001 (4)
C250.028 (5)0.063 (7)0.030 (5)0.004 (4)0.004 (4)0.006 (4)
C260.040 (4)0.042 (5)0.017 (4)0.001 (4)0.001 (3)0.002 (4)
B10.028 (4)0.058 (6)0.034 (5)0.011 (5)0.006 (4)0.003 (5)
F10.071 (5)0.122 (7)0.127 (7)0.029 (5)0.007 (5)0.055 (5)
F20.057 (4)0.103 (6)0.136 (7)0.016 (4)0.042 (4)0.000 (4)
F30.118 (6)0.166 (7)0.044 (4)0.038 (6)0.003 (4)0.018 (5)
F40.079 (5)0.118 (6)0.095 (5)0.046 (4)0.005 (4)0.025 (5)
Geometric parameters (Å, º) top
Ag1—N112.145 (6)C13—C141.405 (11)
Ag1—N23i2.155 (6)C14—C151.382 (11)
Ag1—F1ii3.168 (9)C14—H140.9500
Ag1—F22.832 (8)C15—C161.365 (11)
Ag1—F2iii2.972 (7)C15—H150.9500
O1—C11.210 (9)C16—H160.9500
O2—C11.345 (9)C21—C221.389 (10)
O2—C21.443 (9)C21—C261.394 (11)
O3—C41.196 (9)C22—N231.327 (10)
O4—C41.341 (9)C22—H220.9500
O4—C31.458 (9)N23—C241.352 (11)
C1—C131.504 (11)N23—Ag1iv2.155 (6)
C2—C31.492 (12)C24—C251.382 (12)
C2—H2A0.9900C24—H240.9500
C2—H2B0.9900C25—C261.383 (12)
C3—H3A0.9900C25—H250.9500
C3—H3B0.9900C26—H260.9500
C4—C211.506 (10)B1—F11.329 (13)
N11—C121.332 (10)B1—F21.344 (11)
N11—C161.356 (11)B1—F31.379 (12)
C12—C131.389 (11)B1—F41.391 (13)
C12—H120.9500
N11—Ag1—N23i168.8 (3)C13—C14—H14121.5
C1—O2—C2115.4 (6)C16—C15—C14120.1 (8)
C4—O4—C3114.7 (6)C16—C15—H15119.9
O1—C1—O2124.5 (7)C14—C15—H15119.9
O1—C1—C13123.3 (7)N11—C16—C15122.6 (8)
O2—C1—C13112.2 (7)N11—C16—H16118.7
O2—C2—C3112.9 (7)C15—C16—H16118.7
O2—C2—H2A109.0C22—C21—C26119.8 (7)
C3—C2—H2A109.0C22—C21—C4117.0 (7)
O2—C2—H2B109.0C26—C21—C4123.2 (6)
C3—C2—H2B109.0N23—C22—C21121.9 (8)
H2A—C2—H2B107.8N23—C22—H22119.0
O4—C3—C2108.1 (7)C21—C22—H22119.0
O4—C3—H3A110.1C22—N23—C24118.6 (7)
C2—C3—H3A110.1C22—N23—Ag1iv123.5 (6)
O4—C3—H3B110.1C24—N23—Ag1iv117.3 (5)
C2—C3—H3B110.1N23—C24—C25122.7 (8)
H3A—C3—H3B108.4N23—C24—H24118.7
O3—C4—O4124.8 (7)C25—C24—H24118.7
O3—C4—C21123.7 (7)C24—C25—C26119.1 (8)
O4—C4—C21111.6 (6)C24—C25—H25120.4
C12—N11—C16118.7 (7)C26—C25—H25120.4
C12—N11—Ag1123.7 (5)C25—C26—C21117.9 (7)
C16—N11—Ag1117.3 (5)C25—C26—H26121.1
N11—C12—C13121.2 (8)C21—C26—H26121.1
N11—C12—H12119.4F1—B1—F2111.1 (9)
C13—C12—H12119.4F1—B1—F3108.1 (10)
C12—C13—C14120.3 (7)F2—B1—F3108.0 (9)
C12—C13—C1117.5 (7)F1—B1—F4110.8 (9)
C14—C13—C1122.2 (7)F2—B1—F4113.1 (9)
C15—C14—C13116.9 (7)F3—B1—F4105.3 (8)
C15—C14—H14121.5
C2—O2—C1—O12.8 (11)C13—C14—C15—C162.1 (13)
C2—O2—C1—C13176.4 (6)C12—N11—C16—C151.8 (14)
C1—O2—C2—C393.6 (8)Ag1—N11—C16—C15172.7 (7)
C4—O4—C3—C2152.9 (7)C14—C15—C16—N110.6 (14)
O2—C2—C3—O463.9 (9)O3—C4—C21—C228.2 (13)
C3—O4—C4—O33.4 (12)O4—C4—C21—C22171.7 (7)
C3—O4—C4—C21176.7 (7)O3—C4—C21—C26170.4 (9)
N23i—Ag1—N11—C12177.4 (12)O4—C4—C21—C269.7 (12)
N23i—Ag1—N11—C163.2 (18)C26—C21—C22—N231.0 (13)
C16—N11—C12—C132.5 (12)C4—C21—C22—N23177.7 (8)
Ag1—N11—C12—C13171.6 (6)C21—C22—N23—C240.2 (12)
N11—C12—C13—C140.9 (13)C21—C22—N23—Ag1iv170.8 (6)
N11—C12—C13—C1179.9 (8)C22—N23—C24—C250.3 (13)
O1—C1—C13—C1214.4 (12)Ag1iv—N23—C24—C25171.3 (7)
O2—C1—C13—C12164.9 (7)N23—C24—C25—C261.0 (14)
O1—C1—C13—C14164.7 (8)C24—C25—C26—C212.1 (14)
O2—C1—C13—C1416.1 (11)C22—C21—C26—C252.2 (13)
C12—C13—C14—C151.4 (12)C4—C21—C26—C25176.4 (8)
C1—C13—C14—C15177.6 (8)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ag(BF4)(C14H12N2O4)]
Mr466.94
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)15.2667 (11), 6.7170 (4), 30.8598 (16)
V3)3164.6 (3)
Z8
Radiation typeMo Kα
µ (mm1)1.34
Crystal size (mm)0.16 × 0.04 × 0.04
Data collection
DiffractometerStoe IPDS-II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.814, 0.948
No. of measured, independent and
observed [I > 2σ(I)] reflections
27909, 2772, 1605
Rint0.115
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.144, 0.93
No. of reflections2772
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.75, 1.14

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ag1—N112.145 (6)Ag1—F22.832 (8)
Ag1—N23i2.155 (6)Ag1—F2iii2.972 (7)
Ag1—F1ii3.168 (9)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z.
 

Acknowledgements

Thanks are given to the Consejo Superior de Investigaciones Científicas (CSIC) of Spain for the award of a licence for the use of the Cambridge Structural Database (CSD). JV thanks the Universidad de Antofagasta for a PhD fellowship.

References

First citationBlake, A. J., Champness, N. R., Hubberstey, P., Li, W. S., Withersby, M. A. & Schröder, M. (1999). Coord. Chem. Rev. 183, 117–138.  Web of Science CrossRef CAS Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBrito, I., Vallejos, J., Cárdenas, A., López-Rodríguez, M., Bolte, M. & Llanos, J. (2011). Inorg. Chem. Commun. 14, 897–901.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrito, I., Vallejos, J., López-Rodríguez, M. & Cárdenas, A. (2010). Acta Cryst. E66, o114.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds