inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Trisodium scandium bis­­(orthoborate)

aNational Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, People's Republic of China, bKey Laboratory of Functional Crystal and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China, and cGraduate University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
*Correspondence e-mail: gczhang@mail.ipc.ac.cn

(Received 30 December 2011; accepted 5 April 2012; online 25 April 2012)

Single crystals of tris­odium scandium bis­(orthoborate), Na3Sc(BO3)2, have been obtained by spontaneous crystallization from an Na2O–Sc2O3–B2O3 melt. The crystal structure features a three-dimensional framework composed of planar [BO3]3− groups and distorted ScO6 octa­hedra with Na atoms in the cavities. The Sc atom occupies a special position (Wyckoff position 2b, site symmetry -1) and of the two Na atoms, one occupies a special position (Wyckoff position 2c, site symmetry -1).

Related literature

For Na3Sc2(BO3)3, see: Zhang et al. (2006[Zhang, Y., Ye, N. & Keszler, D. A. (2006). Acta Cryst. E62, i266-i268.]) and for NaScB2O5, see: Becker & Held (2001[Becker, P. & Held, P. (2001). Z. Kristallogr. New Cryst. Struct. 216, 35.]). For similar structures, see: Cai et al. (2011[Cai, G. M., Tao, X. M., Su, L. M., Zheng, F., Yi, D. Q., Chen, X. L. & Jin, Z. P. (2011). J. Solid State Chem. 184, 115-122.]). The program STRUCTURE TIDY (Gelato & Parthé, 1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]) was used to standardize the structural data.

Experimental

Crystal data
  • Na3Sc(BO3)2

  • Mr = 231.55

  • Monoclinic, P 21 /c

  • a = 5.0739 (10) Å

  • b = 8.9930 (18) Å

  • c = 7.029 (2) Å

  • β = 123.60 (2)°

  • V = 267.14 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 153 K

  • 0.27 × 0.14 × 0.09 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.824, Tmax = 1

  • 3029 measured reflections

  • 847 independent reflections

  • 760 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.067

  • S = 1.22

  • 847 reflections

  • 58 parameters

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.62 e Å−3

Data collection: CrystalClear (Rigaku, 2008[Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In efforts to identify new borates as optical materials or catalysts, investigations have been carried out in the Na2O—Sc2O3—B2O3 system, in which, two phases are already known, viz. Na3Sc2(BO3)3 (Zhang et al., 2006) and NaScB2O5 (Becker & Held, 2001). Here, we report a new compound, Na3Sc(BO3)2.

The fundamental building units of the title compounds are triangular [BO3]3- groups and irregular ScO6 octahedra. Each [BO3]3- group connects to three ScO6 octahedra, and each ScO6 octahedron are connected to six [BO3]3- groups by corner sharing, thereby constructing a three-dimensional framework whose cavities are filled with Na+ cations. Sc occupies a special position (Wyckoff position 2b, site symmetry –1), of the two Na atoms, one occupies a special positions (Wyckoff position 2c, site symmetry –1). Na2 occupies a general position. The B—O bond lengths range from 1.3708 (17) to 1.3802 (19) Å, and the mean O—B—O bond angles are equal to 120 (12)° which indicates that the [BO3]3- groups are almost planar. The Sc3+ cation is six-coordinated by oxygen atoms to form a distorted ScO6 octahedron with Sc—O bond lengths ranging from 2.0765 (11) to 2.1285 (11) Å. The Na atoms appear in two crystallographically different environments. The Na1 and Na2 atoms are six- and eight-coordinated by oxygen atoms, respectively. The Na—O bond lengths range from 2.3448 (12) to 2.8515 (15) Å. These abovementioned values are normal in borates such as Na3Sc2(BO3)3 and NaScB2O5.

The structure of the title compound is closely related to Li3Sc(BO3)3 (Cai et al., 2011) which is crystallized in the same space group. The crystal structure of Li3Sc(BO3)3 could also be characterized as a three-dimensional framework constructed by planar [BO3]3- groups and irregular ScO6 octahedra. Both Na and Li atoms occupy two crystallographically independent sites, but Li atoms are four-coordinated by oxygen atoms due to their small ionic radii.

Related literature top

The Sc—O bond lengths and Na—O bond lengths are similar to those in the two phases already known, viz. Na3Sc2(BO3)3 (Zhang et al., 2006) and NaScB2O5 (Becker & Held, 2001). For similar structures, see: Cai et al. (2011). The program STRUCTURE TIDY (Gelato & Parthé, 1987) was used to standardize the atomic coordinates.

Experimental top

The composition of the mixture for crystal growth was 10:1:10 of Na2CO3 (analytically pure), Sc2O3 (analytically pure), and B2O3 (analytically pure). This mixture was heated in a platinum crucible to 1373 K, held at this temperature for several hours, and then the transparent melt was cooled slowly from 1373 K to 1223 K at 3 K h-1. Upon further cooling to room temperature, block shaped colorless crystals were obtained.

Refinement top

The structure was solved with the direct methods program SHELXS97 and refined with the least-squares program SHELXL97 of the SHELXTL.PC suite of programs. The final refinement included anisotropic displacement parameters and a secondary extinction correction. The program STRUCTURE TIDY (Gelato & Parthé, 1987) was then employed to standardize the atomic coordinates.

Computing details top

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear (Rigaku, 2008); data reduction: CrystalClear (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of Na3Sc(BO3)2 with displacement ellipsoids drawn at the 80% probability level.
[Figure 2] Fig. 2. The structure of Na3Sc(BO3)2 given in the polyhedral description. [ScO6] octahedra are aqua, and [BO3] units are dark yellow.
Trisodium scandium bis(orthoborate) top
Crystal data top
Na3Sc(BO3)2F(000) = 224
Mr = 231.55Dx = 2.879 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2093 reflections
a = 5.0739 (10) Åθ = 3.6–31.0°
b = 8.9930 (18) ŵ = 1.58 mm1
c = 7.029 (2) ÅT = 153 K
β = 123.60 (2)°Prism, colourless
V = 267.14 (11) Å30.27 × 0.14 × 0.09 mm
Z = 2
Data collection top
Rigaku Saturn724+
diffractometer
847 independent reflections
Radiation source: fine-focus sealed tube760 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 28.5714 pixels mm-1θmax = 30.9°, θmin = 4.2°
ω scansh = 76
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.824, Tmax = 1.000l = 108
3029 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.027Secondary atom site location: difference Fourier map
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.030P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
847 reflectionsΔρmax = 0.35 e Å3
58 parametersΔρmin = 0.62 e Å3
Crystal data top
Na3Sc(BO3)2V = 267.14 (11) Å3
Mr = 231.55Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.0739 (10) ŵ = 1.58 mm1
b = 8.9930 (18) ÅT = 153 K
c = 7.029 (2) Å0.27 × 0.14 × 0.09 mm
β = 123.60 (2)°
Data collection top
Rigaku Saturn724+
diffractometer
847 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
760 reflections with I > 2σ(I)
Tmin = 0.824, Tmax = 1.000Rint = 0.026
3029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02758 parameters
wR(F2) = 0.0670 restraints
S = 1.22Δρmax = 0.35 e Å3
847 reflectionsΔρmin = 0.62 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sc10.50000.00000.00000.00372 (11)
O10.4755 (2)0.08396 (12)0.27296 (17)0.0073 (2)
O20.0650 (2)0.10637 (11)0.15507 (18)0.0076 (2)
O30.2676 (2)0.31781 (12)0.29120 (18)0.0086 (2)
B10.2264 (4)0.16821 (18)0.2386 (2)0.0052 (3)
Na11.00000.00000.50000.00806 (18)
Na20.73774 (13)0.33234 (8)0.23583 (10)0.01153 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sc10.00282 (19)0.00312 (18)0.00441 (18)0.00007 (12)0.00150 (14)0.00011 (12)
O10.0057 (5)0.0083 (5)0.0072 (5)0.0011 (4)0.0030 (4)0.0006 (4)
O20.0054 (5)0.0077 (5)0.0087 (5)0.0022 (4)0.0033 (4)0.0023 (4)
O30.0084 (5)0.0047 (5)0.0104 (5)0.0016 (4)0.0038 (4)0.0021 (4)
B10.0066 (7)0.0054 (7)0.0039 (7)0.0007 (5)0.0032 (6)0.0007 (5)
Na10.0061 (4)0.0092 (4)0.0065 (4)0.0002 (3)0.0020 (3)0.0004 (3)
Na20.0100 (3)0.0111 (3)0.0143 (3)0.0014 (2)0.0072 (3)0.0017 (2)
Geometric parameters (Å, º) top
Sc1—O2i2.0765 (11)O3—Na22.6242 (12)
Sc1—O2ii2.0765 (11)O3—Na2vii3.0050 (15)
Sc1—O3iii2.0769 (11)B1—Na2viii2.8761 (17)
Sc1—O3iv2.0769 (11)B1—Na2vii2.9851 (19)
Sc1—O12.1285 (11)B1—Na2ix2.9897 (19)
Sc1—O1v2.1285 (11)B1—Na22.9945 (17)
Sc1—Na1vi2.9866 (11)B1—Na2iv3.0253 (19)
Sc1—Na12.9866 (11)B1—Na1viii3.0528 (16)
Sc1—Na2iv3.1073 (8)Na1—O1xi2.3448 (12)
Sc1—Na2iii3.1073 (8)Na1—O3iv2.3752 (12)
Sc1—Na2v3.3049 (9)Na1—O3xii2.3752 (12)
Sc1—Na23.3049 (9)Na1—O2xiii2.4529 (12)
O1—B11.3758 (17)Na1—O2ii2.4529 (12)
O1—Na12.3448 (12)Na1—Sc1xiv2.9866 (11)
O1—Na2iv2.4942 (13)Na1—Na2vii3.0386 (8)
O1—Na22.6855 (12)Na1—Na2xv3.0386 (8)
O1—Na2vii2.8515 (15)Na1—B1xiii3.0528 (16)
O2—B11.3708 (17)Na1—B1ii3.0528 (16)
O2—Sc1viii2.0765 (11)Na2—O2ii2.4662 (12)
O2—Na1viii2.4529 (12)Na2—O1x2.4942 (13)
O2—Na2viii2.4662 (12)Na2—O3ii2.4976 (12)
O2—Na2ix2.5933 (14)Na2—O2xii2.5933 (14)
O2—Na2iv2.8301 (13)Na2—O2x2.8301 (13)
O3—B11.3802 (19)Na2—O1iii2.8515 (15)
O3—Sc1x2.0769 (11)Na2—B1ii2.8761 (17)
O3—Na1x2.3752 (12)Na2—B1iii2.985 (2)
O3—Na2viii2.4976 (12)Na2—B1xii2.990 (2)
O2i—Sc1—O2ii180.00 (5)O1—B1—Na1viii103.69 (9)
O2i—Sc1—O3iii88.26 (4)O3—B1—Na1viii111.93 (9)
O2ii—Sc1—O3iii91.74 (4)Na2viii—B1—Na1viii69.41 (4)
O2i—Sc1—O3iv91.74 (4)Na2vii—B1—Na1viii70.56 (4)
O2ii—Sc1—O3iv88.26 (4)Na2ix—B1—Na1viii111.63 (5)
O3iii—Sc1—O3iv180.00 (4)Na2—B1—Na1viii149.78 (6)
O2i—Sc1—O193.52 (4)Na2iv—B1—Na1viii59.99 (3)
O2ii—Sc1—O186.48 (4)O1—Na1—O1xi180.0
O3iii—Sc1—O193.65 (4)O1—Na1—O3iv75.13 (4)
O3iv—Sc1—O186.35 (4)O1xi—Na1—O3iv104.87 (4)
O2i—Sc1—O1v86.48 (4)O1—Na1—O3xii104.87 (4)
O2ii—Sc1—O1v93.52 (4)O1xi—Na1—O3xii75.13 (4)
O3iii—Sc1—O1v86.35 (4)O3iv—Na1—O3xii180.0
O3iv—Sc1—O1v93.65 (4)O1—Na1—O2xiii106.23 (4)
O1—Sc1—O1v180.00 (2)O1xi—Na1—O2xiii73.77 (4)
O2i—Sc1—Na1vi54.43 (3)O3iv—Na1—O2xiii106.43 (4)
O2ii—Sc1—Na1vi125.57 (3)O3xii—Na1—O2xiii73.57 (4)
O3iii—Sc1—Na1vi52.27 (3)O1—Na1—O2ii73.77 (4)
O3iv—Sc1—Na1vi127.73 (3)O1xi—Na1—O2ii106.23 (4)
O1—Sc1—Na1vi128.72 (3)O3iv—Na1—O2ii73.57 (4)
O1v—Sc1—Na1vi51.28 (3)O3xii—Na1—O2ii106.43 (4)
O2i—Sc1—Na1125.57 (3)O2xiii—Na1—O2ii180.0
O2ii—Sc1—Na154.43 (3)O1—Na1—Sc1xiv134.91 (3)
O3iii—Sc1—Na1127.73 (3)O1xi—Na1—Sc1xiv45.09 (3)
O3iv—Sc1—Na152.27 (3)O3iv—Na1—Sc1xiv136.25 (3)
O1—Sc1—Na151.28 (3)O3xii—Na1—Sc1xiv43.75 (3)
O1v—Sc1—Na1128.72 (3)O2xiii—Na1—Sc1xiv43.52 (3)
Na1vi—Sc1—Na1180.0O2ii—Na1—Sc1xiv136.48 (3)
O2i—Sc1—Na2iv55.86 (4)O1—Na1—Sc145.09 (3)
O2ii—Sc1—Na2iv124.14 (3)O1xi—Na1—Sc1134.91 (3)
O3iii—Sc1—Na2iv123.28 (3)O3iv—Na1—Sc143.75 (3)
O3iv—Sc1—Na2iv56.72 (3)O3xii—Na1—Sc1136.25 (3)
O1—Sc1—Na2iv52.98 (3)O2xiii—Na1—Sc1136.48 (3)
O1v—Sc1—Na2iv127.02 (3)O2ii—Na1—Sc143.52 (3)
Na1vi—Sc1—Na2iv110.20 (2)Sc1xiv—Na1—Sc1180.0
Na1—Sc1—Na2iv69.80 (2)O1—Na1—Na2vii62.41 (3)
O2i—Sc1—Na2iii124.14 (4)O1xi—Na1—Na2vii117.59 (3)
O2ii—Sc1—Na2iii55.86 (4)O3iv—Na1—Na2vii126.75 (3)
O3iii—Sc1—Na2iii56.72 (3)O3xii—Na1—Na2vii53.25 (3)
O3iv—Sc1—Na2iii123.28 (3)O2xiii—Na1—Na2vii60.94 (3)
O1—Sc1—Na2iii127.02 (3)O2ii—Na1—Na2vii119.06 (3)
O1v—Sc1—Na2iii52.98 (3)Sc1xiv—Na1—Na2vii72.62 (2)
Na1vi—Sc1—Na2iii69.80 (2)Sc1—Na1—Na2vii107.38 (2)
Na1—Sc1—Na2iii110.20 (2)O1—Na1—Na2xv117.59 (3)
Na2iv—Sc1—Na2iii180.00 (3)O1xi—Na1—Na2xv62.41 (3)
O2i—Sc1—Na2v48.18 (3)O3iv—Na1—Na2xv53.25 (3)
O2ii—Sc1—Na2v131.82 (3)O3xii—Na1—Na2xv126.75 (3)
O3iii—Sc1—Na2v116.88 (4)O2xiii—Na1—Na2xv119.06 (3)
O3iv—Sc1—Na2v63.12 (4)O2ii—Na1—Na2xv60.94 (3)
O1—Sc1—Na2v125.86 (3)Sc1xiv—Na1—Na2xv107.38 (2)
O1v—Sc1—Na2v54.14 (3)Sc1—Na1—Na2xv72.62 (2)
Na1vi—Sc1—Na2v64.735 (14)Na2vii—Na1—Na2xv180.0
Na1—Sc1—Na2v115.265 (14)O1—Na1—B1xiii84.60 (4)
Na2iv—Sc1—Na2v72.919 (18)O1xi—Na1—B1xiii95.40 (4)
Na2iii—Sc1—Na2v107.081 (18)O3iv—Na1—B1xiii87.18 (4)
O2i—Sc1—Na2131.82 (3)O3xii—Na1—B1xiii92.82 (4)
O2ii—Sc1—Na248.18 (3)O2xiii—Na1—B1xiii26.03 (4)
O3iii—Sc1—Na263.12 (4)O2ii—Na1—B1xiii153.97 (4)
O3iv—Sc1—Na2116.88 (4)Sc1xiv—Na1—B1xiii69.47 (3)
O1—Sc1—Na254.14 (3)Sc1—Na1—B1xiii110.53 (3)
O1v—Sc1—Na2125.86 (3)Na2vii—Na1—B1xiii59.56 (4)
Na1vi—Sc1—Na2115.265 (14)Na2xv—Na1—B1xiii120.44 (4)
Na1—Sc1—Na264.735 (14)O1—Na1—B1ii95.40 (4)
Na2iv—Sc1—Na2107.081 (18)O1xi—Na1—B1ii84.60 (4)
Na2iii—Sc1—Na272.919 (18)O3iv—Na1—B1ii92.82 (4)
Na2v—Sc1—Na2180.00 (2)O3xii—Na1—B1ii87.18 (4)
B1—O1—Sc1122.92 (9)O2xiii—Na1—B1ii153.97 (4)
B1—O1—Na1152.05 (9)O2ii—Na1—B1ii26.03 (4)
Sc1—O1—Na183.62 (4)Sc1xiv—Na1—B1ii110.53 (3)
B1—O1—Na2iv98.70 (8)Sc1—Na1—B1ii69.47 (3)
Sc1—O1—Na2iv84.07 (4)Na2vii—Na1—B1ii120.44 (4)
Na1—O1—Na2iv92.19 (4)Na2xv—Na1—B1ii59.56 (4)
B1—O1—Na288.93 (8)B1xiii—Na1—B1ii180.0
Sc1—O1—Na285.89 (4)O2ii—Na2—O1x165.38 (4)
Na1—O1—Na284.11 (4)O2ii—Na2—O3ii56.90 (4)
Na2iv—O1—Na2169.63 (5)O1x—Na2—O3ii117.78 (4)
B1—O1—Na2vii81.85 (8)O2ii—Na2—O2xii119.08 (4)
Sc1—O1—Na2vii154.03 (5)O1x—Na2—O2xii74.02 (4)
Na1—O1—Na2vii70.81 (4)O3ii—Na2—O2xii97.40 (4)
Na2iv—O1—Na2vii100.94 (4)O2ii—Na2—O3120.74 (4)
Na2—O1—Na2vii87.01 (4)O1x—Na2—O368.37 (4)
B1—O2—Sc1viii173.15 (9)O3ii—Na2—O3164.30 (6)
B1—O2—Na1viii102.22 (8)O2xii—Na2—O369.69 (4)
Sc1viii—O2—Na1viii82.05 (4)O2ii—Na2—O167.85 (4)
B1—O2—Na2viii92.64 (8)O1x—Na2—O1121.70 (2)
Sc1viii—O2—Na2viii92.96 (4)O3ii—Na2—O1119.33 (4)
Na1viii—O2—Na2viii86.77 (4)O2xii—Na2—O188.09 (4)
B1—O2—Na2ix92.69 (8)O3—Na2—O153.44 (3)
Sc1viii—O2—Na2ix82.63 (4)O2ii—Na2—O2x121.86 (2)
Na1viii—O2—Na2ix164.22 (5)O1x—Na2—O2x53.00 (4)
Na2viii—O2—Na2ix97.81 (4)O3ii—Na2—O2x65.40 (4)
B1—O2—Na2iv84.56 (8)O2xii—Na2—O2x72.99 (4)
Sc1viii—O2—Na2iv92.00 (4)O3—Na2—O2x116.64 (4)
Na1viii—O2—Na2iv69.81 (3)O1—Na2—O2x161.07 (4)
Na2viii—O2—Na2iv155.11 (4)O2ii—Na2—O1iii86.99 (4)
Na2ix—O2—Na2iv107.01 (4)O1x—Na2—O1iii79.06 (4)
B1—O3—Sc1x154.28 (10)O3ii—Na2—O1iii88.51 (4)
B1—O3—Na1x120.79 (9)O2xii—Na2—O1iii152.06 (5)
Sc1x—O3—Na1x83.98 (4)O3—Na2—O1iii107.09 (4)
B1—O3—Na2viii91.07 (8)O1—Na2—O1iii112.77 (4)
Sc1x—O3—Na2viii102.13 (4)O2x—Na2—O1iii84.99 (4)
Na1x—O3—Na2viii77.11 (4)O2ii—Na2—B1ii28.43 (4)
B1—O3—Na291.39 (8)O1x—Na2—B1ii145.72 (5)
Sc1x—O3—Na281.85 (4)O3ii—Na2—B1ii28.67 (4)
Na1x—O3—Na288.33 (4)O2xii—Na2—B1ii108.19 (5)
Na2viii—O3—Na2164.30 (6)O3—Na2—B1ii145.52 (5)
B1—O3—Na2vii75.88 (8)O1—Na2—B1ii92.52 (5)
Sc1x—O3—Na2vii78.82 (4)O2x—Na2—B1ii94.05 (4)
Na1x—O3—Na2vii162.26 (5)O1iii—Na2—B1ii89.96 (4)
Na2viii—O3—Na2vii110.62 (5)O2ii—Na2—B1iii85.97 (4)
Na2—O3—Na2vii85.01 (4)O1x—Na2—B1iii83.59 (4)
O2—B1—O1121.35 (13)O3ii—Na2—B1iii110.22 (5)
O2—B1—O3118.55 (12)O2xii—Na2—B1iii150.41 (4)
O1—B1—O3120.10 (12)O3—Na2—B1iii84.32 (5)
O2—B1—Na2viii58.93 (7)O1—Na2—B1iii87.48 (4)
O1—B1—Na2viii171.39 (10)O2x—Na2—B1iii108.55 (4)
O3—B1—Na2viii60.25 (7)O1iii—Na2—B1iii27.14 (4)
O2—B1—Na2vii122.23 (9)B1ii—Na2—B1iii101.22 (5)
O1—B1—Na2vii71.01 (8)O2ii—Na2—B1xii95.39 (4)
O3—B1—Na2vii77.48 (8)O1x—Na2—B1xii95.47 (4)
Na2viii—B1—Na2vii101.32 (5)O3ii—Na2—B1xii72.47 (5)
O2—B1—Na2ix60.05 (7)O2xii—Na2—B1xii27.26 (4)
O1—B1—Na2ix106.68 (9)O3—Na2—B1xii92.97 (5)
O3—B1—Na2ix102.82 (9)O1—Na2—B1xii90.87 (4)
Na2viii—B1—Na2ix81.08 (5)O2x—Na2—B1xii72.71 (4)
Na2vii—B1—Na2ix177.30 (6)O1iii—Na2—B1xii155.12 (4)
O2—B1—Na2158.47 (10)B1ii—Na2—B1xii80.99 (5)
O1—B1—Na263.72 (7)B1iii—Na2—B1xii177.30 (6)
O3—B1—Na261.17 (7)O2ii—Na2—B193.37 (5)
Na2viii—B1—Na2119.59 (6)O1x—Na2—B194.69 (4)
Na2vii—B1—Na279.25 (4)O3ii—Na2—B1146.62 (5)
Na2ix—B1—Na298.50 (5)O2xii—Na2—B183.59 (4)
O2—B1—Na2iv68.63 (8)O3—Na2—B127.44 (4)
O1—B1—Na2iv54.58 (7)O1—Na2—B127.35 (4)
O3—B1—Na2iv164.17 (10)O2x—Na2—B1143.91 (4)
Na2viii—B1—Na2iv122.42 (5)O1iii—Na2—B1106.18 (4)
Na2vii—B1—Na2iv86.79 (4)B1ii—Na2—B1119.59 (6)
Na2ix—B1—Na2iv92.97 (5)B1iii—Na2—B179.16 (5)
Na2—B1—Na2iv117.94 (5)B1xii—Na2—B198.41 (5)
O2—B1—Na1viii51.75 (7)
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z1/2; (iv) x+1, y1/2, z+1/2; (v) x+1, y, z; (vi) x1, y, z1; (vii) x, y+1/2, z+1/2; (viii) x1, y, z; (ix) x1, y+1/2, z1/2; (x) x+1, y+1/2, z+1/2; (xi) x+2, y, z+1; (xii) x+1, y+1/2, z+1/2; (xiii) x+1, y, z+1; (xiv) x+1, y, z+1; (xv) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaNa3Sc(BO3)2
Mr231.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)5.0739 (10), 8.9930 (18), 7.029 (2)
β (°) 123.60 (2)
V3)267.14 (11)
Z2
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.27 × 0.14 × 0.09
Data collection
DiffractometerRigaku Saturn724+
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.824, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
3029, 847, 760
Rint0.026
(sin θ/λ)max1)0.723
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.067, 1.22
No. of reflections847
No. of parameters58
Δρmax, Δρmin (e Å3)0.35, 0.62

Computer programs: CrystalClear (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

 

Acknowledgements

The authors thank Professor Kaibei Yu, of the State Key Laboratory of Explosion Science and Technology of Beijing Institute of Technology, for collecting the single-crystal X-ray diffraction data. This work was supported financially by the National Natural Science Foundation of China (Nos. 91022026 and 51132005) and the Beijing Natural Science Foundation (No. 2102044).

References

First citationBecker, P. & Held, P. (2001). Z. Kristallogr. New Cryst. Struct. 216, 35.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCai, G. M., Tao, X. M., Su, L. M., Zheng, F., Yi, D. Q., Chen, X. L. & Jin, Z. P. (2011). J. Solid State Chem. 184, 115–122.  Web of Science CrossRef CAS Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Y., Ye, N. & Keszler, D. A. (2006). Acta Cryst. E62, i266–i268.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds