metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­tri­chlorido(1-cyano­methyl-4-aza-1-azoniabi­cyclo­[2.2.2]octane-κN4)copper(II) monohydrate

aOrdered Matter Science Research Center, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhouqinqin623@sina.com

(Received 15 March 2012; accepted 18 April 2012; online 25 April 2012)

The asymmetric unit of the title compound, [CuCl3(C8H14N3)(H2O)]·H2O, comprises a neutral complex and a mol­ecule of free water. The complex contains coordinated CuII ions, with Cu—Cl distances ranging from 2.3471 (8) to 2.4011 (8) Å, and with Cu—N and Cu—O distances of 2.0775 (19) and 2.0048 (18) Å, respectively. The resulting coordination polyhedron is a trigonal bipyramid with the Cl atoms in the equatorial plane. In the crystal, O—H⋯Cl and O—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional structure.

Related literature

For background to dielectric-ferroelectric materials, see: Fu et al. (2010[Fu, D. W., Dai, J., Ge, J. Z., Ye, H. Y. & Qu, Z. R. (2010). Inorg. Chem. Commun. 13, 282-285.]); Zhang et al. (2008[Zhang, W., Xiong, R. G. & Huang, S. P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.]). The title compound was prepared in an attempt to make analogs of (dabcoH2)2Cl3[CuCl3(H2O)2]·H2O (Wei & Willett, 1996[Wei, M. & Willett, R. D. (1996). Inorg. Chem. 35, 6381-6385.]) and (dabcoH2)CuCl4 and Zn(dabcoH)Cl3 (Wei & Willett, 2001[Wei, M. & Willett, R. D. (2001). Acta Cryst. E57, m167-m168.]) (dabco is 1,4-diazabicyclo[2.2.2]octan).

[Scheme 1]

Experimental

Crystal data
  • [CuCl3(C8H14N3)(H2O)]·H2O

  • Mr = 358.14

  • Monoclinic, C 2/c

  • a = 24.301 (5) Å

  • b = 8.2794 (17) Å

  • c = 14.069 (3) Å

  • β = 101.69 (3)°

  • V = 2771.9 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.15 mm−1

  • T = 298 K

  • 0.36 × 0.32 × 0.28 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.963, Tmax = 0.971

  • 13618 measured reflections

  • 3155 independent reflections

  • 2881 reflections with I > 2σ(I)

  • Rint = 0.068

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.093

  • S = 1.10

  • 3155 reflections

  • 170 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H13⋯Cl2i 0.93 (4) 2.24 (4) 3.128 (2) 159 (3)
O2—H12⋯O1 0.80 (4) 1.92 (4) 2.693 (3) 160 (4)
O1—H11⋯Cl3ii 0.77 (5) 2.72 (5) 3.447 (3) 159 (4)
O1—H10⋯Cl3i 0.80 (5) 2.54 (6) 3.337 (3) 171 (5)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The study of ferroelectric materials has received much attention and some materials have predominantly dielectric-ferroelectric performance (Fu et al.(2010); Zhang et al.(2008)). The title compound was prepared in an attempt to make analogs to (dabcoH2)2Cl3[CuCl3(H2O)2].H2O (Wei & Willett, 1996) and to (dabcoH2)CuCl4 and Zn(dabcoH)Cl3(Wei & Willett, 2001).

The asymmetric unit of the title compound, (dabcoCH2CN)[CuCl3(H2O)].H2O(dabco is 1,4-bicyclo[2.2.2]octane), comprises a (dabcoCH2CN)[CuCl3(H2O)] moleculeand a molecule of free water.The Cu(dabcoCH2CN)Cl3(H2O) molecule coordinated CuII ion has Cu—Cl distances ranging from 2.347 (8) to 2.401 (8) Å, a Cu—N distance of 2.078 (19) Å and a Cu—O distance of 2.005 (18) Å.There are hydrogen bonds found which are O(1)—H(10)···Cl(3), O(1)—H(11)···Cl(3), O(2)—H(13)···Cl(2), O(1)—H(12)···O(1).The hydrogen-bonded sheets link the molecules into a three-dimensional structure.

Related literature top

For background to dielectric-ferroelectric materials, see: Fu et al. (2010); Zhang et al. (2008). The title compound was prepared in an attempt to make analogs of (dabcoH2)2Cl3[CuCl3(H2O)2].H2O (Wei & Willett, 1996) and to (dabcoH2)CuCl4 and Zn(dabcoH)Cl3(Wei & Willett, 2001).

Experimental top

(dabcoCH2CN)Cl(10 mmol,1.68 g) were dissolved in 15 mL water,thenCuCl2.H2O (10 mmol, 1.70 g) in 15 ml water was added into the previous solution and the mixed solution was filtered last. After a few days a great quantity of green microcrystasls were obtained by by slow evaporation at room temperature in air.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC.

Refinement top

H atoms were placed in calculated positions(C—H = 0.97 Å for Csp3 atoms), assigned fixed Uiso values [Uiso = 1.2Ueq(Csp2/N) and 1.5Ueq(Csp3)] and allowed to ride.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.
Aquatrichlorido(1-cyanomethyl-4-aza-1-azoniabicyclo[2.2.2]octane- κN4)copper(II) monohydrate top
Crystal data top
[CuCl3(C8H14N3)(H2O)]·H2OF(000) = 1464
Mr = 358.14Dx = 1.716 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 12903 reflections
a = 24.301 (5) Åθ = 3.1–27.5°
b = 8.2794 (17) ŵ = 2.15 mm1
c = 14.069 (3) ÅT = 298 K
β = 101.69 (3)°Block, green
V = 2771.9 (10) Å30.36 × 0.32 × 0.28 mm
Z = 8
Data collection top
Rigaku SCXmini
diffractometer
3155 independent reflections
Radiation source: fine-focus sealed tube2881 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = 3131
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.963, Tmax = 0.971l = 1818
13618 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.037P)2 + 2.7164P]
where P = (Fo2 + 2Fc2)/3
3155 reflections(Δ/σ)max < 0.001
170 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.86 e Å3
Crystal data top
[CuCl3(C8H14N3)(H2O)]·H2OV = 2771.9 (10) Å3
Mr = 358.14Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.301 (5) ŵ = 2.15 mm1
b = 8.2794 (17) ÅT = 298 K
c = 14.069 (3) Å0.36 × 0.32 × 0.28 mm
β = 101.69 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3155 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2881 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.971Rint = 0.068
13618 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.62 e Å3
3155 reflectionsΔρmin = 0.86 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08955 (10)0.0927 (3)0.17062 (17)0.0250 (5)
H1A0.05500.09370.19510.030*
H1B0.10830.00940.18870.030*
C20.07568 (10)0.1079 (3)0.05965 (17)0.0246 (5)
H2A0.09220.01820.03090.030*
H2B0.03530.10420.03660.030*
C30.09449 (10)0.3817 (3)0.19080 (16)0.0215 (5)
H3A0.11820.47230.21640.026*
H3B0.06210.38200.22120.026*
C40.07485 (10)0.4018 (3)0.08053 (16)0.0232 (5)
H4A0.03410.40020.06360.028*
H4B0.08770.50470.06030.028*
C50.17741 (9)0.2318 (3)0.17037 (17)0.0215 (5)
H5A0.19650.12850.18060.026*
H5B0.20310.31420.20190.026*
C60.16180 (10)0.2671 (3)0.06133 (18)0.0261 (5)
H6A0.17640.37180.04790.031*
H6B0.17820.18590.02580.031*
C70.08423 (11)0.2867 (3)0.07951 (18)0.0300 (6)
H7A0.09860.38980.09640.036*
H7B0.10230.20230.10990.036*
C80.02328 (12)0.2805 (3)0.11707 (18)0.0314 (6)
Cl20.20113 (3)0.44899 (7)0.38684 (4)0.02851 (16)
Cl30.19677 (3)0.05276 (7)0.34199 (4)0.02920 (16)
Cl40.06069 (3)0.23400 (10)0.39370 (5)0.03668 (18)
Cu10.151563 (11)0.19653 (3)0.364527 (19)0.01994 (11)
H100.217 (2)0.384 (6)0.666 (3)0.091 (19)*
H110.187 (2)0.295 (5)0.709 (3)0.074 (17)*
H120.1751 (17)0.215 (5)0.543 (3)0.063 (13)*
H130.2148 (17)0.111 (4)0.521 (3)0.055 (10)*
N10.12648 (8)0.2280 (2)0.21552 (13)0.0166 (4)
N20.09851 (8)0.2654 (2)0.02936 (14)0.0197 (4)
N30.02358 (12)0.2753 (4)0.14739 (19)0.0471 (7)
O10.18732 (11)0.3383 (3)0.66114 (18)0.0418 (5)
O20.17734 (8)0.1430 (2)0.50550 (13)0.0276 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0211 (12)0.0239 (12)0.0279 (12)0.0077 (10)0.0001 (9)0.0016 (9)
C20.0241 (12)0.0221 (12)0.0263 (12)0.0055 (10)0.0018 (9)0.0047 (9)
C30.0207 (11)0.0226 (12)0.0208 (11)0.0067 (9)0.0030 (9)0.0008 (8)
C40.0241 (12)0.0215 (12)0.0228 (12)0.0048 (9)0.0019 (9)0.0007 (9)
C50.0121 (11)0.0287 (12)0.0238 (12)0.0007 (9)0.0036 (9)0.0016 (9)
C60.0133 (12)0.0402 (14)0.0255 (13)0.0021 (10)0.0057 (9)0.0013 (10)
C70.0272 (14)0.0432 (16)0.0190 (12)0.0016 (11)0.0035 (10)0.0018 (10)
C80.0329 (16)0.0393 (15)0.0204 (12)0.0038 (12)0.0013 (11)0.0021 (10)
Cl20.0248 (3)0.0267 (3)0.0309 (3)0.0035 (2)0.0016 (2)0.0039 (2)
Cl30.0303 (3)0.0266 (3)0.0309 (3)0.0101 (2)0.0067 (2)0.0034 (2)
Cl40.0170 (3)0.0620 (5)0.0328 (4)0.0085 (3)0.0093 (3)0.0129 (3)
Cu10.01484 (17)0.02434 (18)0.01982 (17)0.00123 (10)0.00157 (11)0.00118 (10)
N10.0110 (9)0.0189 (9)0.0196 (9)0.0008 (7)0.0023 (7)0.0001 (7)
N20.0159 (10)0.0259 (10)0.0172 (9)0.0007 (8)0.0029 (7)0.0018 (7)
N30.0357 (16)0.0609 (18)0.0387 (15)0.0060 (13)0.0065 (11)0.0060 (12)
O10.0392 (14)0.0456 (13)0.0378 (13)0.0086 (11)0.0013 (10)0.0065 (10)
O20.0252 (10)0.0324 (10)0.0229 (9)0.0049 (8)0.0007 (7)0.0000 (7)
Geometric parameters (Å, º) top
C1—N11.493 (3)C6—N21.513 (3)
C1—C21.534 (3)C6—H6A0.9700
C1—H1A0.9700C6—H6B0.9700
C1—H1B0.9700C7—C81.469 (4)
C2—N21.512 (3)C7—N21.511 (3)
C2—H2A0.9700C7—H7A0.9700
C2—H2B0.9700C7—H7B0.9700
C3—N11.495 (3)C8—N31.133 (4)
C3—C41.537 (3)Cl2—Cu12.4011 (8)
C3—H3A0.9700Cl3—Cu12.3893 (7)
C3—H3B0.9700Cl4—Cu12.3471 (8)
C4—N21.514 (3)Cu1—O22.0048 (18)
C4—H4A0.9700Cu1—N12.0775 (19)
C4—H4B0.9700O1—H100.80 (5)
C5—N11.502 (3)O1—H110.77 (5)
C5—C61.532 (3)O2—H120.80 (4)
C5—H5A0.9700O2—H130.93 (4)
C5—H5B0.9700
N1—C1—C2111.02 (18)H6A—C6—H6B108.3
N1—C1—H1A109.4C8—C7—N2111.6 (2)
C2—C1—H1A109.4C8—C7—H7A109.3
N1—C1—H1B109.4N2—C7—H7A109.3
C2—C1—H1B109.4C8—C7—H7B109.3
H1A—C1—H1B108.0N2—C7—H7B109.3
N2—C2—C1109.86 (18)H7A—C7—H7B108.0
N2—C2—H2A109.7N3—C8—C7179.0 (3)
C1—C2—H2A109.7O2—Cu1—N1174.24 (8)
N2—C2—H2B109.7O2—Cu1—Cl488.43 (6)
C1—C2—H2B109.7N1—Cu1—Cl493.78 (6)
H2A—C2—H2B108.2O2—Cu1—Cl383.13 (6)
N1—C3—C4111.57 (18)N1—Cu1—Cl391.32 (5)
N1—C3—H3A109.3Cl4—Cu1—Cl3127.71 (3)
C4—C3—H3A109.3O2—Cu1—Cl290.87 (6)
N1—C3—H3B109.3N1—Cu1—Cl293.43 (6)
C4—C3—H3B109.3Cl4—Cu1—Cl2109.08 (3)
H3A—C3—H3B108.0Cl3—Cu1—Cl2122.51 (3)
N2—C4—C3109.19 (18)C1—N1—C3107.48 (17)
N2—C4—H4A109.8C1—N1—C5108.24 (18)
C3—C4—H4A109.8C3—N1—C5108.54 (18)
N2—C4—H4B109.8C1—N1—Cu1111.19 (14)
C3—C4—H4B109.8C3—N1—Cu1111.95 (13)
H4A—C4—H4B108.3C5—N1—Cu1109.34 (14)
N1—C5—C6111.69 (18)C7—N2—C2111.36 (18)
N1—C5—H5A109.3C7—N2—C6108.14 (18)
C6—C5—H5A109.3C2—N2—C6109.45 (19)
N1—C5—H5B109.3C7—N2—C4111.33 (18)
C6—C5—H5B109.3C2—N2—C4108.25 (18)
H5A—C5—H5B107.9C6—N2—C4108.26 (18)
N2—C6—C5109.06 (18)H10—O1—H11109 (5)
N2—C6—H6A109.9Cu1—O2—H12116 (3)
C5—C6—H6A109.9Cu1—O2—H13113 (2)
N2—C6—H6B109.9H12—O2—H13104 (4)
C5—C6—H6B109.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H13···Cl2i0.93 (4)2.24 (4)3.128 (2)159 (3)
O2—H12···O10.80 (4)1.92 (4)2.693 (3)160 (4)
O1—H11···Cl3ii0.77 (5)2.72 (5)3.447 (3)159 (4)
O1—H10···Cl3i0.80 (5)2.54 (6)3.337 (3)171 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[CuCl3(C8H14N3)(H2O)]·H2O
Mr358.14
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)24.301 (5), 8.2794 (17), 14.069 (3)
β (°) 101.69 (3)
V3)2771.9 (10)
Z8
Radiation typeMo Kα
µ (mm1)2.15
Crystal size (mm)0.36 × 0.32 × 0.28
Data collection
DiffractometerRigaku SCXmini
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.963, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
13618, 3155, 2881
Rint0.068
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.10
No. of reflections3155
No. of parameters170
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.62, 0.86

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H13···Cl2i0.93 (4)2.24 (4)3.128 (2)159 (3)
O2—H12···O10.80 (4)1.92 (4)2.693 (3)160 (4)
O1—H11···Cl3ii0.77 (5)2.72 (5)3.447 (3)159 (4)
O1—H10···Cl3i0.80 (5)2.54 (6)3.337 (3)171 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z+1/2.
 

Acknowledgements

This work was supported by Jiangsu Planned Projects for Postdoctoral Research Funds (1101010B).

References

First citationFu, D. W., Dai, J., Ge, J. Z., Ye, H. Y. & Qu, Z. R. (2010). Inorg. Chem. Commun. 13, 282–285.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWei, M. & Willett, R. D. (1996). Inorg. Chem. 35, 6381–6385.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationWei, M. & Willett, R. D. (2001). Acta Cryst. E57, m167–m168.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, W., Xiong, R. G. & Huang, S. P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds